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I: TWO-SOURCE MIXING METHOD

We consider a double-clamped mechanical resonator
that is capacitively coupled to an immobile gate elec-
trode. The two-source mixing method requires that the
conductance through the resonator varies when sweeping
the gate voltage. In what follows, we consider the regime
of single-electron tunneling, but the same final result for
the mixing current is obtained for any other regime. The
vibrations are driven by applying an oscillating voltage
V ac
g cosωt on the gate electrode. When applying the volt-

age V ac
s cos ((ω + δω)t+ φe) on the source electrode, the

mixing current at frequency δω arises in the Taylor ex-
pansion of the current in z and Vg [1]. The dependence
of the current on these two quantities can be traced back
to the tunnelling rate dependence on the electrostatic
energy difference between the two relevant charge states
of the dot. For vanishing bias voltage the electrostatic
energy reads EE(Q) = (Q + Cg(z)Vg)

2/2CΣ(z) with Cg

and CΣ the gate and total capacitances and Q the charge
on the dot. This gives for the relevant energy difference
∆E = EE(Q−e)−EE(Q) = e(e/2−Q−Cg(z)Vg)/CΣ(z).
The current is then a function of ∆E(z, Vg). Expanding
the current expression for eVs ≪ kBT , small displace-
ment z [given by Eq. 1 of the main text], and V ac

g one
obtains:

I =
∂G

∂Vg
V ac
s cos ((ω + δω)t+ φe)

× [V ac
g cosωt+ V dc

g C ′
g/Cg[Xz cos(ωt) + Yz sin(ωt)].

(S1)

Here ∂G/∂Vg is the transconductance of the nanotube
device, V dc

g the static voltage applied to the gate and we
assumed Q ≈ −CgVg ≫ e. Expanding the argument of
the first cosine and averaging over a period 2π/ω gives
the mixing current Iδω at frequency δω:

Iδω =
1

2

∂G

∂Vg
V ac
s

[
cos (δωt+ φe)

(
V ac
g +

V dc
g C ′

g

Cg
Xz

)

− sin (δωt+ φe)
V ac
g C ′

g

Cg
Yz

]
. (S2)

This leads to the mixing current quadratures XI and YI,
which depend on the quadratures Xz and Yz of the dis-

placement as

XI = α
[
(Xz + CgV

ac
g /C ′

gV
dc
g ) cosφe − Yz sinφe

]
,

(S3)

YI = α
[
−(Xz + CgV

ac
g /C ′

gV
dc
g ) sinφe + Yz cosφe

]
,

(S4)

with α = (∂G/∂Vg)V
ac
s V dc

g C ′
g/2Cg. The expression of

the mixing current in Eq. S2 and its quadratures in
Eqs. S3 and S4 are the same for other types of conduc-
tors, such as the electronic Farby-Pérot interferometer
or the the field-effect transistor [1]. In the next section,
we show that the capacitive force in the single-electron
tunneling regime is different from that in other regimes.

II: DRIVING FORCE IN THE
SINGLE-ELECTRON TUNNELING REGIME

We discuss here the oscillating force acting on a me-
chanical resonator hosting a dot that behaves as a single-
electron transistor in the limit typically realized in ex-
periments with a slow oscillator Γ ≫ ωm, where Γ is the
typical incoherent tunneling rate (kBT ≫ ℏΓ). When the
gate voltage is modulated, the charge on the dot changes,
leading to an additional oscillating force acting on the os-
cillator. This is the reason why the constant β in Eq. 6
in the main text for the capacitive force can deviate from
one. The total capacitive force between the resonator
and the the gate electrode can be written as

F = − ∂

∂z

Q2
g

2Cg(z)
=

Q2
gC

′
g

2C2
g

(S5)

where Qg is the charge on the gate electrode (we assume
that the capacitances to the source or drain are not modi-
fied by the displacement of the resonator). In the sequen-
tial tunnelling regime the charge on the dot is always an
integer multiple of the elementary chargeQ = −e(n0+n),
with n0 and n integers, and only n varies between 0 and
1. From electrostatics the gate charge is then:

Qg = CgVg −
Cg

CΣ
(VsCs + CdVd + CgVg +Q). (S6)



2

where we introduced the source and drain voltages
(Vs,Vd) and capacitances (Cs, Cd) with CΣ = Cg +Cs +
Cd. Since the number of electrons fluctuates of one unit
during transport, there are actually two forces acting on
the dot, one for each value of Q. Using the separation
of time scales we can assume that the oscillator cannot
respond to the fast electron fluctuations, and thus it feels
an average force given by the average value of Q. When
δVg(t) = V ac

g cos(ωt) is applied to the gate electrode, we
can write that the resulting variation of the charge on
the gate electrode reads:

δQg = CgδVg

[
1− Cg

CΣ

]
+

Cg

CΣ
δ⟨Q⟩. (S7)

We can neglect the higher orders in the z-dependence
of the capacitance when computing the force in Eq. S5,
since this gives rise only to a renormalization of the res-
onance frequency. The variation of Q is controlled by
the master equation for the charge. Assuming that only
two charge states are possible, one has ⟨Q⟩ = −n0e− ef
with f the Fermi function f = (eε/kBT + 1)−1 where the
ε dependence on the gate voltage is δε = −eCgδVg/CΣ.
We obtain then

δ⟨Q⟩ = − e2

kBT

Cg

CΣ
δVgf(1− f). (S8)

Note that the factor (e2/CΣ)/kBT ≫ 1 in the Coulomb
blockade regime. This term δ⟨Q⟩ is largest for gate volt-
ages at which the peak conductance is highest and where
f = 1/2. Inserting Eq. S8 into Eq. S7 and Eq. S5 one
obtains Eq. 5 of the main text.

For completeness, it can be useful to recall the deriva-
tion of the coupling constant between the mechanical and
electronic degrees of freedom. This is the variation of the
force acting on the oscillator when an electron on the dot
is added or removed.

F0 = Fg(Q)− Fg(Q− e) =
C ′

ge
2

CgCΣ
(Qg/e− 1). (S9)

For |Qg| ≫ e and Vs ≈ Vd ≈ 0 one finds

F0 =
C ′

gVge

CΣ
. (S10)
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