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ABSTRACT

Driven nanomechanical resonators based on low-dimensional materials are routinely and efficiently detected with electrical mixing measure-
ments. However, the measured signal is a non-trivial combination of the mechanical eigenmode displacement and an electrical contribution,
which makes the extraction of the driven mechanical response challenging. Here, we report a simple yet reliable method to extract solely the
driven mechanical vibrations by eliminating the contribution of pure electrical origin. This enables us to measure the spectral mechanical
response as well as the driven quadratures of motion. This method is crucial for nanomechanical vibrations in the nonlinear regime, since the
shape of the mechanical response depends on the physics at work. We further show how to calibrate the measured signal into units of dis-
placement. Our method marks a key step forward in the study of nanoelectromechanical resonators based on low-dimensional materials in
the nonlinear regime.
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Nanomechanical resonators1 are exquisite sensors of mass
adsorption2–4 and external forces.5–8 These sensing capabilities enable
advances in different research fields, such as mass spectrometry,9 sur-
face science,10–12 heat transport,13,14 in situ nanofabrication,15 mag-
netic resonance imaging,16–18 scanning probe microscopy,19–21

nanomagnetism,22–25 and probing viscosity in liquids.26 Many of these
studies are carried out with mechanical resonators based on low-
dimensional materials, such as carbon nanotubes,27,28 because of their
tiny mass. However, the detection of motion becomes increasingly dif-
ficult as resonators get smaller.

The electrical detection of resonators based on low-dimensional
materials is usually realized with a mixing-based method,28,29 where the
vibrations are driven near resonance frequency and detected at a low fre-
quency within the RC bandwidth of the circuit. The electrical mixing
detection has been applied to resonators based on carbon nano-
tubes,6,10,12,28,30–47 graphene,35,48–59 transition metal dichalcogenides
(TMDs),60–65 and semiconducting nanowires.66–74 Different variants of
the mixing method were developed by applying either two signals28 on
the device or one signal that is amplitude49 or frequency33 modulated.

The transduction from displacement into current can be based on
capacitive28 or piezo-resistive measurements.75 Methods were also
implemented to measure thermal vibrations39 and ring-downs43,76 at
temperatures down to below 0.1K. The fundamental detection limit was
theoretically investigated in Ref. 77. Despite this large amount of work,
the measurement of the spectral response of nanomechanical vibrations
to a driving force—the most commonmethod to study mechanical reso-
nators1—remains to be demonstrated with the mixing detection.

Here, we report on a simple, yet reliable, method to measure the
spectral mechanical response to a driving force using the mixing
method with two signals applied to the device. By properly tuning the
phase of the measured signal, we are able to separate the signal of the
mechanical vibrations from the signal of pure electrical origin inherent
to the mixing method. Moreover, we use the pure electrical contribu-
tion as a resource to calibrate the displacement. The ability to measure
the spectral mechanical response is a key step for exploring the rich
physics of nonlinear phenomena.

We produce nanotube mechanical resonators by growing nano-
tubes using chemical vapor deposition on prepatterned electrodes. The
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nanotube is suspended ’ 150 nm above a gate electrode and con-
nected between two metal electrodes6,78 [Fig. 1(a)]. We clean the nano-
tube surface from contamination molecules by applying a large current
through the device under vacuum at low temperature.79

We detect the vibrations of the nanotube resonator by capaci-
tively driving it with an oscillating voltage Vac

g cosxt on the gate elec-
trode, applying the voltage Vac

s cos ððxþ dxÞt þ ueÞ on the source
electrode, and measuring the current at frequency dx from the drain
electrode with a lock-in amplifier6 [Fig. 1(a)] where ue is the phase dif-
ference between the two oscillating voltages. We set dx within the
bandwidth of the circuit, and we sweep x through the mechanical fre-
quency xm (dx � xm). All the measurements are carried out with
the device in the single-electron tunneling regime80–84 at the tempera-
ture T¼ 6K.

To detect the vibrations, the nanotube has to behave as a transis-
tor such that the conductance G depends on the charge Q in the nano-
tube. The application of Vac

g cosxt modulates the charge through two
terms dQ ¼ CgdVg þ dCgVg. The first term has a pure electrical ori-
gin, while the second term is proportional to the driven vibration dis-
placement dz via dCg ¼ C0

gdz, where C
0
g is the spatial derivative of the

capacitance. The application of Vac
s cos ððxþ dxÞt þ ueÞ enables one

to mix down the modulation of G into a current oscillation at the fre-
quency dx within the circuit bandwidth via Ohm’s law I ¼ GVs. The
mixing intertwines the two terms of the charge modulation.

The downside of the mixing method is that the measured current
is not directly proportional to the driven vibration displacement, mak-
ing the extraction of the driven mechanical response complicated. To
illustrate this, we consider the amplitude of the current

AI ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXz þ CgVac

g =C0
gV

dc
g Þ2 þ Y2

z

q
, where we express the vibration

displacement and the measured current as

z ¼ Az cosðxt þ /zÞ ¼ Xz cosxt þ Yz sinxt; (1)

I ¼ AI cosðdxt þ /IÞ ¼ XI cos dxt þ YI sin dxt (2)

and a ¼ ð@G=@VgÞVac
s Vdc

g C0
g=2Cg is a constant that depends on the

transconductance ð@G=@VgÞ. In the limit where the displacement z is
much smaller than CgVac

g =C0
gV

dc
g , the response of AI consists of a sig-

nal proportional to the quadrature Xz together with a large, frequency-
independent background that has a pure electrical origin, see Fig. 1(b).
In the opposite limit, the responses of AI and Az become proportional
to each other [Fig. 1(c)]. This shows that while the shape of the
mechanical response remains the same in these two limits, the mea-
sured shape of the spectral response of AI is completely different. In
practice, the measured response of AI in the linear regime is usually
compared with the predictions based on a Lorentzian line shape using
several free parameters.85 These can include the resonance frequency,
the mechanical linewidth, the offset CgVac

g =C0
gV

dc
g , the constant a, and

the phase difference ue. This analysis usually becomes unreliable
in the nonlinear regime, since the mechanical response can take a large
range of different line shapes. Therefore, a method to directly extract
the mechanical response without any fitting procedure is highly
desirable.

We demonstrate a method to separate the signal of the mechani-
cal vibrations from the signal of pure electrical origin. The idea is to
put all the current signal of pure electrical origin in the quadrature XI

such that XI / Xz þ CgVac
g =C0

gV
dc
g and YI / Yz. This is achieved by

manipulating the data after the measurements with a rotation of the
angle /I [Eq. (2)] in the plane ðXI;YIÞ (see supplementary material
section, Sec. I). To illustrate this method, we proceed with the response
of the two quadratures XI and YI of the current directly acquired from
the lock-in amplifier [Figs. 2(a) and 2(b)]. The two responses cannot
be described by the usual functional forms of driven linear oscillators.
We then compute the background offset of YI by incrementing the
rotation phase /I by d/I from 0 to 2p [Fig. 2(c)]. When this back-
ground offset in YI is zero, all the current signal of pure electrical origin
is in XI and can be subtracted from the data. The resulting quadrature
responses have now the familiar functional form of linear oscillators
[Figs. 2(e) and 2(f)], and the spectral response of the displacement is
well described by a Lorentzian [Fig. 3(a)].

We use the subtracted background current Xe
I of pure electrical

origin to calibrate the displacement of the nanotube resonator in units
of meters [Fig. 3(a)]. This background current is given by
Xe
I ¼ ð@G=@VgÞVac

s Vac
g =2; we verify that it depends linearly on Vac

g
[Fig. 2(d)]. The two quadratures then read

Xz ¼
CgVac

g

C0
gV

dc
g

XI � Xe
I

Xe
I

; Yz ¼
CgVac

g

C0
gV

dc
g

YI

Xe
I
: (3)

The calibration of the displacement is subject to the uncertainty in the
estimation of Cg=C0

g (see below).
This method enables us to obtain the mechanical response in the

nonlinear regime, see Fig. 3(c). While the response can be described by

FIG. 1. (a) Schematics of the measured device. The nanotube is suspended over a
gate electrode and electrically connected to two metal electrodes. Two oscillating volt-
age signals are applied to the device. The current I is measured with a RLC resonator
and a low-temperature amplifier.6 (b) Calculated response of a underdamped harmonic
oscillator electromechanically driven by a capacitive force FðxÞ / Vac

g ðxÞ expected
from the mixing method in the limit where the mechanical displacement is much smaller
than CgVac

g =C0
gV

dc
g . (c) Same as panel b but in the opposite limit.
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the usual Duffing equation without nonlinear damping [red line in
Fig. 3(c)], a detailed study of this device where vibrations are cou-
pled to single-electron indicates that the nonlinear mechanical
response to a driving force is significantly modified by thermal fluc-
tuations (see Ref. 87). This results in a decreasing responsivity for
an increasing drive and the absence of hysteresis when the driving
frequency is swept back and forth.87 When taking into account the
effect of thermal fluctuations, the Duffing constant is 1:9� 1031

m�2 s�2. Note that while the thermal fluctuations modify the
response of the driven vibrations, they are barely visible in the mea-
surement shown in Fig. 3(c) as they are averaged out with the lock-
in amplifier.

The current Xe
I of pure electrical origin also enables quantify-

ing the mass of the mechanical mode in a way that is simple and
reliable. In Fig. 3(b), we compute the force response of the displace-
ment amplitude at resonance frequency xm in the linear regime
using

Az ¼ Cg

C0
g

Vac
g

Vdc
g

YI

Xe
I
; F ¼ bC0

gV
dc
g Vac

g ; (4)

where YI corresponds to the current amplitude at resonance frequency
after having separated the signal of pure electrical origin. The constant
b can be different from one for electron transport in the single-
electron tunneling regime [Eq. (5) and supplementary material, Sec.
II]. The mass m is determined from the slope of the force-
displacement response using Az ¼ ðQm=mx2

mÞF with Qm the quality
factor. The slope depends on the current terms YI and Xe

I measured
from the lock-in amplifier but is independent of Vac

g ; Vac
s , and

@G=@Vg that enter the prefactor a in the current-displacement conver-
sion and whose values could be somewhat altered by the amplification
chain and the losses along the coaxial cables. We determine
m ¼ 4:56 1:5 ag from the mass measured at different Vdc

g values
[Fig. 4(b)]. This value is consistent with the length of the suspended
nanotube measured by scanning electron microscopy and assuming a
1.5 nm radius single-wall nanotube.

The uncertainty in the mass measurement and the displacement
calibration comes from the uncertainty in the estimation of the
nanotube-gate separation d and the mass fluctuations in Fig. 4(b). The
separation d ¼ 1506 20 nm measured by atomic force microscopy

FIG. 2. (a) and (b) Spectral response of the current quadratures XI and YI to the
driven capacitive force. The two blue boxes indicate the YI values used to compute
the background offset Ye

I . (c) Estimated background offset Ye
I from the data in a

and b by incrementing the phase /I in Eq. (1) by d/I. (d) Background current X e
I

with pure electrical origin with d/I set so that Y
e
I ¼ 0. The red line is a linear fit of

the data. (e) and (f) Spectral response of the displacement quadratures Xz and Yz
to the driven capacitive force after having subtracted Xe

I from XI . The data are com-
pared to the quadratures expected for a linear oscillator (red lines).

FIG. 3. (a) Spectral response of the displacement amplitude Az to the driven capac-
itive force in the linear regime after having subtracted Xe

I from XI . The data are
compared to a Lorentzian peak (red line). (b) Force response of the displacement
amplitude Az at the mechanical resonance frequency. The red line is a linear fit of
the data. The force is multiplied by the quality factor, since the latter varies when
increasing the driving force.35 (c) Nonlinear mechanical response of the displace-
ment amplitude Az to the driven capacitive force. The spectral response is extracted
using the method described in Fig. 2. The red line is the fit to the usual Duffing
equation.86 The Duffing constant is much larger than that in panel (a) due to the
coupling of vibrations and single-electron tunneling, see Ref. 87; concomitantly, the
resonance frequency is lower.
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enters in the estimation of C0
g ¼ Cg=d ln ð2d=rÞ in Eqs. (3) and (4)

when considering the capacitance between a tube with radius r sepa-
rated from a plate by the distance d. We estimate Cg ¼ e=DVg ¼ 9:7
aF from the separation DVg in gate voltage between two conductance
peaks associated with single-electron tunneling [Fig. 4(a)]. This capaci-
tance is consistent with Cg ¼ 12:9 aF obtained from the device geome-
try measured by scanning electron microscopy and atomic force
microscopy. The fluctuations of m in Fig. 4(b) are partly due to the
error in the estimation of the average charge occupation f, which varies
between 0 and 1 when sweeping Vdc

g through the conductance peaks
[Fig. 4(a)], since f enters in the prefactor b of the driven force in Eq.
(4) as

b ¼ 1� Cg

CR
þ f ð1� f Þ Cg

CR

e2=CR

kBT
(5)

in the incoherent single-electron tunneling regime. Here, CR is the
total capacitance of the single-electron transistor and varies gradually
from 19.9 to 26.5 aF when sweeping Vdc

g over multiple conductance
peaks. The fluctuations of m are also attributed to the slow increase in
the contamination on the nanotube surface at 6K; the three largest m
values in Fig. 4(b) are obtained from force-displacement measure-
ments carried out one month after the first measurements.

We now discuss the limits of our method to measure the
mechanical response. The method is expected to be reliable for any
device as long as the current contributions with mechanical, and pure
electrical origins are both well resolved. This means that the signal of
both contributions should be large compared to the electrical noise
floor of the measurement circuit. This is the case in our measurements,
see Figs. 2 and 3. The noise from the electrical circuit at 6K is given by
the Johnson–Nyquist noise of the 7.5 kX impedance of the RLC reso-
nator.6 Using the current noise SI ¼ 210 fA =

ffiffiffiffiffiffi
Hz

p
at 6K, the conver-

sion a between current and displacement, and the 1.5Hz
measurement bandwidth, we get a 22 pm standard deviation in the
displacement noise, which is consistent with the noise observed in
Fig. 3(a). The contribution to the measured signal from the thermal
mechanical fluctuations is significantly smaller than that from the elec-
trical noise. The vibrations can be driven to large amplitudes, but it is
better to have displacements much smaller than the resonator-gate
separation to avoid nonlinearity in the detection. In this way, the
capacitance Cg and its derivative C0

g remain constant resulting in a lin-
ear relation between the measured quadratures XI � Xe

I and YI and
the displacement quadratures Xz and Yz in Eq. (3). The nonlinearity in

the detection is related to Cg=C0
g ¼ ðd � dzÞ ln ð2ðd � dzÞ=rÞ in our

device. For large vibrations, the nonlinearity in the detection has to be
taken into account when estimating Az. In Fig. 3(c), the nonlinearity in
the detection modifies Az by about 1% at the resonance.

In summary, we show how to measure the spectral mechanical
response using electrical mixing measurements. Our method enables
us to calibrate the displacement in meters. Another asset of this
method is the determination of the mass of the measured mechanical
eigenmode, which is a key parameter of the mechanical resonators
when used in sensor applications. This work opens the possibility to
quantitatively study nanoelectromechanical resonators in the nonlin-
ear regime, where interesting mesoscopic phenomena emerge.1 The
driven nonlinear mechanical response can be described by a large
range of different shapes depending on, for example, the strength of
the thermal noise, the presence of frequency noise, the nonlinear reso-
nant coupling to a high-frequency mode, and whether the restoring
force is described by only the cubic nonlinear term in the displacement
or also higher order terms. Our method enables us to determine such
driven response spectra in an unambiguous way from electrical mixing
measurements. Another important aspect of the method is the calibra-
tion of the displacement, which enables quantifying the strength of
nonlinear forces by determining for instance the Duffing constant
from the measurement of the resonance frequency shift as a function
of displacement.1

See the supplementary material for theoretical description of the
two-source mixing technique and the methodology used to derive the
driving force in the single electron tunneling domain.
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FIG. 4. (a) Electrical conductance of the nanotube device as a function of gate volt-
age. (b) Mass of the eigenmode measured at different gate voltage values. The red
dashed line indicates the average mass of 4.5 ag.
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