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I. THEORETICAL DESCRIPTION

A. Structure of the section

This section provides the basic theoretical description
of the problem. It is structured as follows. In Sec. I B
we will first recall the standard description of incoherent
transport in a single-electron transistor. We then derive
in Sec. I C the back-action of the electronic transport on
the oscillator, obtaining an expression for the damping
coefficient and the quadratic coefficient of the effective
potential. In Sec. ID we derive in the equilibrium case
the full non-linear effective potential of the oscillator. We
obtain ωQ from the quadratic term of the effective poten-
tial. In Sec. I E we derive the displacement fluctuation
spectrum Sxx(ω) for the oscillator at equilibrium and dis-
cuss its behaviour. In Sec. I F we derive expressions for
the first four coefficients in the expansion in the displace-
ment x of the effective potential and the average of the
full non-linearity. In Sec. IG we recall the main steps

of the derivation of the Fokker-Planck equation for the
oscillator quadratures in a Duffing description of the re-
sponse to a drive. We then describe how we have used its
numerical solution to fit the observed nonlinear spectra
(Sec.IH). We use ω0 instead of ωo

m for the bare resonance
frequency to make the expressions more compact.

B. Electronic transport

Electronic transport measurements in the device are
described by incoherent tunnelling in the Coulomb block-
ade regime. This corresponds to the condition ℏΓe ≪
kBT ≪ ∆E ≪ EC , where Γe is the tunneling rate of
the electrons to the quantum dot, EC = e2/CΣ is the
Coulomb energy (CΣ the total capacitance of the dot, ∆E
the electronic level spacing, e the electron charge). For
a description of transport in this regime see for instance
Ref. [1]. Concerning the oscillator we found that the sys-
tem lays in the regime ℏω0 ≪ ℏΓe ≪ kBT , where we re-
call that ω0 is the (bare) mechanical resonance frequency
measured far from the conductance peaks. This implies
that the oscillator can be described by a classical ap-
proach and that it is much slower than the electronic de-
grees of freedom. We will use then a Born-Oppenheimer
kind of approximation, where one first solves the elec-
tronic problem for a given value of the displacement x of
the oscillator and then considers the back-action of the
electronic system on the oscillator [2–6].
We begin with the electronic description for the case of

Ns electronic degrees of freedom, where Ns = 1 describes
the spinless case, Ns = 2 the spin- or valley-degenerate
case, and Ns = 4 the case when both valley and spin de-
generacy are taken into account. We will find that most
results do not depend on the actual value of Ns. In the
incoherent transport regime (kBT ≫ ℏΓe) the system is
fully described by the probability that the electronic state
σ (for instance σ could be the spin projection) is occu-
pied: Pσ. We define also the probability that the dot is
empty P0, or occupied by one of the σ states P1 =

∑
σ Pσ.

We assume that Coulomb blockade forbids double occu-
pancy of the dot. One can then write a Pauli master
equation for these probabilities:

Ṗσ = Γ+P0 − Γ−Pσ. (1)

Here Γ± = Γ±
L + Γ±

R, and Γ±
α is the rate at which an

electron is added (+) or removed (−) from the quantum
dot from the α (=L, R) lead. The probability satisfies
the sum-rule

∑
σ Pσ +P0 = 1. The explicit expression of

the rates depends on the Fermi distributions on the leads:
Γ+
α = Γαfα and Γ−

α = Γα(1 − fα), where by symmetry
the rates do not depend on σ. The electric current at the
left lead and going from the left to the right lead, reads
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then:

IL = −e
[
NsΓ

+
L(1− P1)− Γ−

LP1

]
(2)

where we introduced the probability that the dot is occu-
pied with one electron of any species P1 =

∑
σ Pσ. The

equation of motion for the probability simplifies to

Ṗ1 = NsΓ
+ − (NsΓ

+ + Γ−)P1. (3)

Using its stationary solution one finds that the current is

IL = −eNs(Γ
−
RΓ

+
L − Γ−

LΓ
+
R)/Γe, (4)

where Γe = NsΓ
+ + Γ−. Setting the right lead to the

ground as in the experiment and using Vg and V as the
voltage potentials applied to the gate and the left lead,
one can write the dependence of the Fermi distributions
on these voltages: fL = fF (ϵ1 − e(Vg − V )Cg/CΣ +
eV CR/CΣ) and fR = fF (ϵ1 − eVgCg/CΣ − eV CR/CΣ),
where CL, CR, Cg are the left, right and gate capaci-

tances, CΣ = CL+CR+Cg, fF (ϵ) = 1/(eϵ/kBT +1), and
ϵ1 = ϵ0+(e2−2Qe)/2CΣ, with Q the total charge on the
dot, and ϵ0 the single electron energy.
We can now calculate the conductance for vanishing

bias voltage:

G = − ΓLΓRNse
2

(ΓL + ΓR)[1 + (Ns − 1)f0]

∂f0
∂ϵ1

(5)

where we introduced f0 = fL = fR for V = 0. The
conductance has a maximum when the argument of the
Fermi function equals kBT lnNs/2.

C. Back-action on the oscillator

We now consider the coupling of the quantum dot to
the oscillator. When one electron is added to the dot,
an additional electrostatic force Fe acts on the oscillator
leading to a term in the Hamiltonian −Fexn, where n is
the additional number of electrons on the dot. In the in-
coherent regime n can only take the integer values 0 or 1.
(In the main text we used the usual notation found in the
opto-mechanical literature for the coupling ℏg = Fexzp,

where xzp =
√
ℏ/2mω0 with m the mass of the oscil-

lator.) The presence of this coupling term changes the
previous equations in Sec. I B by introducing the follow-
ing substitution in the rate expressions:

ϵ0 → ϵ0 − Fex. (6)

We can then write a system of equations describing the
oscillator position and the probability of occupation of
the dot [7]:

mẍ = −mω2
0x−mγẋ+ FeP1(t) + F (t) (7)

Ṗ1(t) = NsΓ
+(x)− Γe(x)P1, (8)

here γ and F (t) are the intrinsic damping rate and a weak
external force driving the oscillator.
Assuming small displacements from the equilibrium

value of both x and P1 we can define

x = x0 + x̃(t) (9)

P1 = P
(0)
1 + P̃1(t). (10)

We obtain the following non-linear equations for x0 and

P
(0)
1 :

x0 =
Fe

mω2
0

P
(0)
1 (11)

P
(0)
1 =

NsΓ
+(x0)

Γe(x0)
, (12)

and a linear system for the small fluctuating parts x̃ and
P̃1:

¨̃x = −ω2
0 x̃− γ ˙̃x+ (Fe/m)P̃1 + F (t)/m (13)

P̃1 = [Ns∂xΓ
+ − P

(0)
1 ∂xΓe]x̃− ΓeP̃1. (14)

Introducing the Fourier transform x̃(ω) =
∫
dteiωtx̃(t)

and using the explicit form of P
(0)
1 we have:

P̃1(ω)(Γe − iω) = Ns(Γ
−∂xΓ

+ −Γ+∂xΓ
−)x̃(ω). (15)

Substituting this expression into the equation for the dis-
placement we have

[−ω2 + ω2
Q − iωγR]x̃(ω) = F (ω)/m (16)

with the renormalized damping and frequency:

γR = γ − F 2
eNs

mΓe
Ξ, (17)

ω2
Q = ω2

0 +
F 2
eNs

m
Ξ, (18)

where we use the notation ωQ since it is related to the
quadratic coefficient of the effective potential. We de-
fined

Ξ =
Γ−∂ϵ1Γ

+ − Γ+∂ϵ1Γ
−

ω2 + Γ2
e

. (19)

More explicitly, we have:

Ξ = − 1

kBT

(ΓL + ΓR)[ΓLfL(1− fL) + ΓRfR(1− fR)]

ω2
0 + Γ2

e

,

(20)

where we substituted ω by the value of the unperturbed
resonance frequency ω0. Strictly speaking when the re-
duction of ωQ is large one should insert ωQ and obtain
a self-consistent equation, but since we are interested in
the limit of Γ ≫ ω0 > ωQ this will have a negligible im-
pact on the final result. The expression simplifies further
in the relevant limit eV ≪ kBT used in the experiment:

Ξ = − 1

kBT

(ΓL + ΓR)
2f0(1− f0)

ω2
0 + (ΓL + ΓR)2[1 + (Ns − 1)f0]2

, (21)
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where f0 = fL = fR is the Fermi distribution of the
leads. For the damping we thus obtain

γR = γ +
ϵP
kBT

Nsω
2
0(ΓL + ΓR)f0(1− f0)

k (ω2
0 + (ΓL + ΓR)2k2)

, (22)

with k = 1 + (Ns − 1)f0. We introduced the polaronic
energy ϵP = F 2

e /mω2
0 = 2ℏg2/ω0, which is the crucial

energy scale of the problem. For ω0 ≪ ΓL + ΓR the
resonance frequency simplifies to

ω2
Q = ω2

0

[
1− ϵP

kBT
Ns

f0(1− f0)

[1 + (Ns − 1)f0]2

]
. (23)

The importance of the ratio ϵP /kBT it is clearly visible
here, since when this ratio is sufficiently large ω2

Q changes
sign, indicating the appearance of a bistability. Note that
f0 is the Fermi distribution of the metal electrodes. One
can readily verify that the resonance frequency associated
with the linear part of the restoring force is lowest when
f0 = 1/(1 +Ns). It reads

ω2
Q

∣∣
min

= ω2
0

[
1− ϵP

4kBT

]
, (24)

independently of Ns. Substituting the same value of f0 =
1/(Ns + 1) into the expression for the damping Eq. (22)
for ω0 ≪ ΓL + ΓR one obtains

γR = γ +
ϵP
kBT

ω2
0

4Γe
, (25)

where Γe = (ΓL + ΓR)Ns/(Ns + 1). Thus in terms of
Γe the expression of the damping at the maximum of
reduction of the frequency does not depend on Ns. This
expression has been used to extract the value of Γe in the
main text.

D. Effective potential

The reduction of the resonance frequency is due to the
back-action of the electronic system on the oscillator.
This generates an effective force acting on the oscilla-
tor that depends on x in a non-linear fashion due to the
x-dependence of the tunnelling rate:

Feff(x) = −mω2
0x+ FeNsΓ

+(x)/Γe(x). (26)

Here Γ+(x) and Γe(x) are defined in Sec. I B using ϵ0 →
ϵ0 −Fex. In the equlilibrium case (eV ≪ kBT ) the force
reads:

Feff(x) = −mω2
0x+

Fe

e(ϵ−Fex)/kBT−lnNs + 1
, (27)

where ϵ = ϵ1 − eVgCg/CΣ. The electronic contribution
is clearly non-linear. The interpretation is simple. The
force induced by the electrons is just Fe multiplied by
the probability that the dot is occupied by an additional

electron. In equilibrium this probability is given by the
Fermi function. Note however that it does not coincide
with the Fermi distribution of the metals (f0), since the
chemical potentials in the dot and in the leads differ. The
number of electronic degrees of freedoms Ns appear only
as a shift of the energy level. The equilibrium condition
for the mechanical oscillator Feff(x0) = 0 gives

mω2
0x0 =

Fe

e(ϵ−Fex0)/kBT−lnNs + 1
. (28)

The spring constant is proportional to the derivative with
respect to x0 of the right-hand side of this expression. It
is maximal for

(ϵM − Fex0)/kBT = lnNs. (29)

When sweeping the gate voltage, that is ϵ, the resonance
frequency reaches it minimum at ϵM . (One can show that
the energies ϵ corresponding to the maximum of the con-
ductance and to the the maximum of the reduction of the
frequency coincide only in the case of spin-less fermions
Ns = 1; the difference in ϵ is however of the order of
kBT lnNs and is thus difficult to resolve experimentally.)
In terms of the displacement from the equilibrium value,
x̃ = x − x0, the effective force acquires a particularly
simple form:

Feff(x̃) = −mω2
0 x̃+

Fe

2
tanh

[
Fex̃

2kBT

]
, (30)

which becomes for small Fex̃/2kBT

Feff(x̃) = −
[
mωo

m
2 − 1

4x2
zp

(ℏg)2

kBT

]
x̃− 1

48x4
zp

(ℏg)4

(kBT )3
x̃3.

(31)

We can obtain from Eq. 30 the effective potential by in-
tegration:

Ueff(x̃) =
mω2

0 x̃
2

2
− kBT ln

[
cosh

[
Fex̃

2kBT

]]
, (32)

where we choose the arbitrary potential constant such
that Ueff(0) = 0. The potential is symmetric in this case
[when Eq. (29) holds], the general form can be readily
derived by integrating Eq. (30).
From Eq. (32) one can see that the effective potential

evolves from a purely parabolic behaviour for Fe small to
a double well for Fe sufficiently large. It is interesting to
write the potential in terms of the dimensionless variable
z = x̃/(Fe/mω2

0), that measures the distances in units of
the displacement induced by the force Fe. The potential
reads:

Ueff

ϵP
=

z2

2
− 1

ϵ̃P
ln cosh(ϵ̃P z/2). (33)

One can see that its form depends now on a single param-
eter ϵ̃P = ϵP /kBT , that is the natural coupling constant
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Fig. S1: Evolution of the effective potential for the oscillator
for different values of the ratio ϵP /kBT = 0.1, 2, 4, 6, 10 from
the upper to the lower curve. For ϵP /kBT = 4 the potential
is quartic at leading order.

of the problem. We show in Fig. S1 the evolution of the
potential for ϵ̃P = 0.1, 2, 4, 6, 10. One can expand the
potential to order 4 to obtain:

Ueff

ϵP
=

z2

2

(
1− ϵ̃P

4

)
+

ϵ̃3P
192

z4 + . . . . (34)

For ϵ̃P ≪ 1, one has a simple harmonic oscillator. For
ϵ̃P = 4 the quadratic term vanishes and for small dis-
placement the potential is quartic at leading order. For
ϵ̃P > 4 the system is bistable and features a double-well
potential.

The bistability is directly related to the two possi-
ble states of the dot, empty or filled with one electron.
The phase diagram and the crossover to the bistability
in the coherent tunnelling limit has been discussed in
Refs. [8, 9]. In the bistable region the current is strongly
reduced leading to a current blockade induced by the
electron-phonon coupling. Recently it has been proposed
to exploit this kind of bistability in a double-dot coupled
to an oscillator to design a nanomechanical qubit[10].

E. Fluctuation spectrum and softening of the
mechanical mode

The first effect of the coupling is a reduction of the res-
onance frequency. For small ϵ̃P or for small displacement
this follows from the expression of the quadratic part of
the effective potential (Eq. 34) that leads to

ω2
Q

ω2
0

= 1− ϵ̃P
4

for ϵ̃P ≪ 1. (35)

This effect has been observed by several groups [11–17].
For larger values of ϵ̃P one cannot rely anymore on just
the value of the quadratic part to quantify the observed
mechanical resonance frequency. The oscillator becomes

highly non-linear, so some care has to be taken to mea-
sure the resonance frequency of the system in equilib-
rium. This can be done by measuring the driven spec-
trum by keeping the driven vibration amplitude smaller
than the standard deviation of the thermal vibration am-
plitude. Otherwise, the resonance frequency depends on
the intensity of the drive used to detect it, see Sec. IG.
Even for infinitesimal drive, the thermal fluctuations al-
low to explore regions of different vibration amplitudes
for which the period of the oscillator takes values that
can be very different. In order to find an averaged value
for the observed resonance frequency for small drive we
will follow again Ref. [8] and calculate the displacement
fluctuation spectrum at equilibrium:

Sxx(ω) =

∫
dteiωt⟨(x̃(t)− ⟨x̃⟩)(x̃(0)− ⟨x̃⟩)⟩. (36)

For a small coupling constant Sxx(ω) reduces to a
Lorentzian function peaked at ωQ as defined in Eq. (35).
For a larger coupling constant the resanance peak broad-
ens and shifts to lower frequencies, but it remains well
identified, and the resonance frequency can be deter-
mined for instance, by measuring Sxx(ω) [18]. In Ref. [8]
it is shown that in the equilibrium limit Sxx(ω) coincides
with the response function for a weak drive, which is
what is measured in this work. In equilibrium and for in-
finitesimal damping, Sxx(ω) can be calculated following
the methods of statistical mechanics [19]:

Sxx(t) =

∫
dx̃odpoP (x̃o, po)

[
x̃(t)x̃(0)− ⟨x̃⟩2

]
, (37)

where x̃(t) is the solution to the time evolution of the
displacement when the force is given by Feff in Eq. (30)
with initial conditions for the displacement and the mo-
mentum x̃o and po. The quantity P is the Boltzman
distribution:

P (x̃o, po) = N e
− p2o/2m+Ueff (x̃o)

kBT (38)

where Ueff is given by Eq. (32) and N is a normalization
factor.
In order to perform the calculation it is convenient to

change the integration variables. Instead of using (x̃o, po)
we will use (E, τ), where E = p2o/2m+U(x̃o) and τ is the
time along the trajectory of energy E. The Jacobian is
unitary dx̃odpo = dEdτ . We can now write the spectrum
as follows:

Sxx(t) =

∫
dE

∫ TE

0

dτEe
−E/kBTN x̃E(t+ τE)x̃E(τE)

(39)

where τE is the time along the trajectory with energy E
and TE is the period of the orbit. Note that one could
have more than one orbit for a given energy. We will
focus in the following on the stable case occurring when
ϵ̃P < 4 and for which only one orbit is present. We
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can now perform the Fourier transform of Eq. (39) by
introducing the Fourier series of the orbit displacement:

x̃E(τ) =

+∞∑
n=−∞

e−inωEτ x̃n(E) (40)

x̃n(E) =

∫ TE

0

dτ

TE
einωEτxE(τ) (41)

with ωE = 2π/TE . Substituting these expressions into
Eq. (39) and performing the Fourier transform we obtain:

Sxx(ω) = N
∫

dEe−E/kBT
∑
n ̸=0

|x̃n(E)|2 TE2πδ(ω−nωE).

(42)

Note that dropping the n = 0 harmonics allows to sub-
tract the average of the trajectory.

We now perform the integral in the energy variable.
The equation nωEn(ω) = ω defines a function En(ω) for
each trajectory. We can then write:

Sxx(ω) = N e−En(ω)/kBT
∑
n ̸=0

|x̃n(En(ω))|2
2πn

ω

2π

n
∣∣dωE

dE

∣∣
(43)

This expression can be used to compute the spectrum
either numerically for any value of the parameters, or
analytically in some limits. In Extended Data Fig. 1 we
show the result of the numerical evalution of this expres-
sion for ϵ̃P < 4. For ϵ̃P > 4 the system becomes bistable;
the crossover between the stable and the bistable regions
occurs when the quadratic term of the effective potential
vanishes, see the dotted yellow line in Extended Data
Fig. 1. Due to the strong non-linearity of the poten-
tial combined with the thermal fluctuations, the spec-
trum has a maximum corresponding to the resonance
frequency (thick red continuous line), which approaches
≈ 0.75ω0 at ϵ̃P = 4. The spectrum in Extended Data
Fig. 1 also shows a large broadening of the resonance
due to phase fluctuations. The effective quality factor
approaches Q ≃ 5.5 at ϵ̃P = 4. Note that there is no
direct contribution of the dissipation to the peak broad-
ening in the model. Taking into account the dissipation
induced by the coupling between vibrations and single-
electron tunneling (SET) changes only qualitatively the
peak broadening in Extended Data Fig. 1.

The dependence of the maximum of this spectrum as
a function of ϵ̃P has been used in the main text (see Fig.
3d) to fit the temperature dependence of the resonance
frequency at the gate voltage corresponding to the con-
ductance peak and infer an estimate of ϵP . We do not
have an analytical expression, but fitting the numerical
result one obtains

ωM/ω0 = 1 +

5∑
n=1

anϵ̃
n
P (44)

with a1 = −0.127655, a2 = 0.010475, a3 = 0.0125029,
a4 = −0.00480876, and a5 = 0.000515142, which is
within 0.1% of the numerical result for 0 ≤ ϵ̃P ≤ 4.

F. Coefficients of a series expansion of the
potential in the displacement and estimation of the
thermal energy stored in the non-harmonic part of

the potential

In this section we derive explicit expressions for the
first 4 coefficients of the series expansion of the effec-
tive potential for small x̃. We will express these nonlin-
ear coefficients as well as the amount of thermal energy
stored in the nonlinearity as a function of ϵP . This al-
lows us to quantify the amount of thermal energy stored
in the nonlinearity shown in Fig. 5d of the main from the
suppression of the resonance frequency measured at each
temperature text using Eq. 44. We will use the standard
notation:

Ueff(x̃) = U0 +
mω2

Q

2
x̃2 +

mβD

3
x̃3 +

mγD
4

x̃4. (45)

Since the constant is irrelevant, we can obtain the other
coefficients directly from the expression of the effec-
tive force Eq. (30) using dUeff/dx = −Fen + mω2

0x,
d2Ueff/dx

2 = −Fedn/dx + mω2
0 , and so on. Here n =

1/ (exp{(ϵ− Fex)/kBT − lnNs}+ 1) and has to be eval-
uated at x = x0, that is, the equilibrium position. Using
the properties of n we have:

ω2
Q

ω2
0

= 1− ϵP
kBT

n(1− n) (46)

βD =
F 3
e

2m(kBT )2
n(1− n)(2n− 1) (47)

γD = − F 4
e

6m(kBT )3
n(1− n)(6n2 − 6n+ 1). (48)

We evaluate explicitly these expressions at the symmetric
point for which n = 1/2:

ω2
Q

ω2
0

= 1− ϵP
4kBT

, βD = 0, (49)

γD =
F 4
e

48m(kBT )3
=

ϵ2Pmω4
0

48(kBT )3
. (50)

These expressions are independent of the value of Ns.
In order to quantify the degree of non-linearity of the

potential it is interesting to compare the contribution of
the average of the quadratic term of the potential to the
average of the full effective potential. For this we can use
the expression of the effective potential given by Eq. (33).
The average value of z2 reads:

⟨z2⟩ =
∫

dze−Ueff (z)/ϵ̃P z2
/∫

dze−Ueff (z)/ϵ̃P = 1/ϵ̃P+1/4.

(51)
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Thus the average of the (dimensionless) quadratic part
of the potential reads:

U2 ≡ d2Ueff

dz2

〈
z2

2

〉
= (1− ϵ̃P /4)(1/ϵ̃P +1/4)/2. (52)

In a similar way we can calculate the average of the full
potential

⟨Ueff⟩ =
∫

dze−Ueff (z)/ϵ̃PUeff(z)

/∫
dze−Ueff (z)/ϵ̃P . (53)

The quantity ⟨Ueff⟩−U2 corresponds to the average of
the sum of all the nonlinear terms of the potential, which
could be interpreted as the amount of thermal energy
stored in the nonlinearity. One finds numerically that
⟨Ueff⟩−U2 ≈ 0.0169ϵ̃P+0.001ϵ̃2P in the region 0 < ϵ̃P ≤ 4.
This quantity is finite at ϵ̃P = 4 where U2 vanishes. Thus,
approaching this value the sum of the contribution of the
non-linear terms becomes dominant with respect to the
contribution of the quadratic term. A plot of (⟨Ueff⟩ −
U2)/U2 as a function of ϵ̃P is shown in Fig. S2. (⟨Ueff⟩ −
U2)/U2 ≈ 0.033ϵ̃2P for ϵ̃P → 0 and (⟨Ueff⟩ − U2)/U2 ≈
1.34/(4− ϵ̃P ) for ϵ̃P → 4, the bistability threshold.

� � � � �
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Fig. S2: Fraction of thermal energy stored in the non-
linearity, i.e. the ratio of the average of the sum of the non-
linear terms of the potential to the average of the quadratic
part U2.

G. Nonlinear Duffing response in presence of
thermal fluctuations

In this subsection we consider the response of the non-
linear oscillator to an external drive. The results of this
section are used to extract the value of the coupling g
from the measurement of the shift of the resonance fre-
quency as a function of the driven vibration amplitude
in Fig. 5b of the main text and to perform the fit of the
response spectrum. The measurements are performed as
close as possible to the symmetric point, for which the
potential is symmetric in x̃. We will thus focus on this
symmetric point, limiting the expansion to the quartic

term. This corresponds to the standard Duffing oscilla-
tor in presence of thermal fluctuations. We find that the
typical thermal amplitude of fluctuations of the oscilla-
tor are sufficiently large to induce a sizable change in the
resonance frequency. It is thus crucial to include these
fluctuations that modify quantitatively the nonlinear re-
sponse to an external drive.
We will follow standard methods to describe the sys-

tem [19, 20]. For clarity and uniformity of notation, we
derive the main equations that lead to a Fokker-Planck
description (see Eq. (70) in the following) of the slow de-
grees of freedoms: the two quadratures. We begin by
writing a Langevin equation for the displacement x̃:

¨̃x = −γ ˙̃x− ω2
0 x̃− γDx̃3 + fD cos(ωt) + fN (t), (54)

where γD is the non-linear Duffing coefficient, and fD
and fN (t) are the driving and thermal forces divided by
the mass. We assume

⟨fN (t)fN (t′)⟩ = 2Dδ(t− t′) (55)

with D = kBTγ/m. We now introduce the complex
(quadrature) variable z(t) as follows:

x̃(t) = z(t)eiωt + z(t)∗e−iωt (56)

˙̃x(t) = iω
[
z(t)eiωt − z(t)∗e−iωt

]
. (57)

We can now perform the derivative of the above two equa-
tions:

˙̃x(t) = iω
[
z(t)eiωt − z(t)∗e−iωt

]
(58)

¨̃x(t) = 2iωż(t)eiωt + (iω)2
[
z(t)eiωt + z(t)∗e−iωt

]
(59)

where we have used the condition ż(t)eiωt+ ż(t)∗e−iωt =
0 implicit in the definition of z. Substituting the equa-
tions for x̃, ˙̃x, and ¨̃x in the equation of motion, multipling
it by e−iωt, and averaging it over a period with the as-
sumption that z evolves slowly gives

2iωż(t) = ω2z(t)− iγωz(t)− ω2
0z(t)− 3γD|z|2z(t)

+
fD
2

+ ⟨fN (t)e−iωt⟩. (60)

We now introduce the time variable τ = γt/2 and scale

z as q(τ) =
√
3γD/ωγz(2τ/γ). This gives

q̇(τ) = −iΩq(τ)−q(τ)+ i|q|2q(τ)− iF0− iFN (τ), (61)

where we approximated ω2−ω2
0 ≈ 2ω(ω−ω0) and defined

Ω =
(ω − ω0)

γ/2
, F0 =

√
3γDfD

2 (ωγ)
3/2

, (62)

FN (t) =

〈√
3γDfN (t)e−iωt

(ωγ)
3/2

〉
. (63)

Neglecting the fluctuations, the stationary solution
reads

q0 = F0/(|q0|2 − Ω+ i). (64)
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This defines the usual Duffing response. In particular one
can express the dimensionless resonance frequency as a
function of the amplitude:

Ω = |q0|2 ±
√
F 2
0 /|q0|2 − 1. (65)

The first term defines what is called the ’back-bone’ of
the resonance. This corresponds roughly to the depen-
dence of the maximum of the amplitude oscillation on the
driving frequency when measuring the spectra for differ-
ent drives. It depends quadratically on the dimension-
less oscillation amplitude. When the thermal fluctuations
are negligible this dependence can be used to extract the
value of the non-linear Duffing coefficient from the data.
We discuss in the following the validity of this relation in
presence of large thermal fluctuations.

We can now introduce q = u + iv, with u and v real.
We have then

u̇ = gu(u, v) + ξu(τ), v̇ = gv(u, v) + ξv(τ), (66)

with

ξu + iξv = −i
√
3γD

〈
fN (t)eiωt

〉
/ (ωγ)

3/2
. (67)

and

gu = −u−(u2+v2−Ω)v, gv = −v+(u2+v2−Ω)u−F0.

(68)

The correlation functions of the ξ-fields can be ap-
proximated by ⟨ξu(τ)ξv(τ ′)⟩ = 0, ⟨ξu(τ)ξu(τ ′)⟩ =
⟨ξv(τ)ξv(τ ′)⟩ = 2Dδ(τ − τ ′) where

D =
3γDD

4ω3γ2
=

3γDkBT

4mω3γ
. (69)

Finally from the two Langevin equations for u and v we
can derive a Fokker-Planck equation for the probability
W (u, v):

D(∂2
u + ∂2

v)W − ∂u(guW )− ∂v(gvW ) = ∂tW. (70)

The Fokker-Planck Eq. (70) can be solved numerically
for a given set of parameters to obtain the function

q0(F0,D,Ω) = u0+iv0 =

∫
dudvW (u, v)(u+iv). (71)

This gives the average of the two quadratures in dimen-
sionless units.

As a first application of this equation we calculate
numerically the maximum of the response amplitude of
the oscillator |qmax

0 | and the value Ωmax for which this
maximum appears. When fluctuations are negligible, for
D → 0, from Eq. (65) one has Ωmax = |qmax

0 |2. In Fig. S3
we plot Ωmax as a function of |qmax

0 | for different values
of D. For the smallest value of D = 0.1 a good parabolic
behavior is observed. Increasing D the curves flatten and
deviations from the simple quadratic behavior are visible.

��� ��� ��� ��� ��� ��� ���
�

�

�

�

�

|��
���|

Ω
�
�
�

Fig. S3: The Figure shows Ωmax as a function of |qmax
0 |

for D = .1, .2, .5, 1., 2., 3., 4., 5., from the lower to the upper
curve. The effect of the fluctuations is to shift the initial
value to higher frequency and to deform the dependence on
|qmax

0 |. In the case of D = .1 we show a fit with a quadratic
dependence that gives a coefficient of 0.9|qmax

0 |2. The small
steps are due to the discretization of the frequency in the
numerical calculation.

This shows that using the quadratic dependence of the
back-bone to extract the Duffing coefficient gives a quali-
tatively reasonable result when D < 1. In order to have a
more reliable estimate, in the next subsection we discuss
a fitting procedure that exploits the form of the response
spectrum as predicted by the Fokker-Planck approach.

H. Procedure used to fit the nonlinear Duffing
response

Using the results described in the previous sub-section,
we now explain the procedure to determine the Duffing
constant, and thus the ratio ϵP /kBT and the coupling g,
from driven nonlinear spectra when the thermal fluctu-
ations are large. These data are shown in Figs. 5a,c in
main text and Fig. S4. We obtain the Duffing constant
by collectively fitting the whole set of measured spectra
spanning the linear-nonlinear crossover when sweeping
the drive intensity. The spectra are measured nearby
the conductance peak, that is, almost at the symmetric
point. From the experimentally measured spectra, the
two quadratures {Uni, Vni} are extracted for Nv different
values of the driving gate voltage V ac

n and for Nw differ-
ent values of the driving frequency ωni One has thus a set
of 2NvNw values with Nv = 10 and Nn = 300. Using the
expression of the nonlinear coefficient given by Eq. (50)
and the definition of D given by Eq. (69) we can write a
dimensionfull expression of the quadratures {ue, ve}:

ue =
1

ϵ̃P

√
kBTγ

mω3
0

u0(F0, ϵ̃
2
Pω0/64γ, (2ω − ω0)/γ),(72)
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Fig. S4: Driven nonlinear spectra spanning the linear-nonlinear crossover when increasing the drive at 6 K. We emphasize that
a single set of parameters is used to fit the data of 10 different spectra; the fit is shown by the red line.

ve =
1

ϵ̃P

√
kBTγ

mω3
0

v0(F0, ϵ̃
2
Pω0/64γ, (2ω − ω0)/γ).(73)

Here u0(F0,D,Ω) and v0(F0,D,Ω) are the (average of
the) dimensionless quadratures obtained from the solu-
tion of the Fokker-Planck equation as defined by Eq. (71).
We then define the χ2 function:

χ2 =

Nv∑
n=1

Nw∑
i=1

[
(ue(ωni, F0 = FvV

ac
n )− Uni)

2
+

(ve(ωni, F0 = FvV
ac
n )− Vni)

2
]
. (74)

The free parameters of the fit are {ω0, γ, ϵ̃P , Fv}. The
factor Fv is the relation between the dimensionless driv-
ing force intensity and the experimental driving voltage.
This only assumes that the driving force increases lin-
early with the amplitude of the injected ac drive. The
best fit for V dc

g = 0.7572 V gives the values ϵP /kBT =
0.22, ω0/2π = 29.7696 MHz, γ/2π = 13.229 kHz, Fv =
2.10897 · 105 V−1. The fit is shown in Fig. S4.

In order to determine the error bar of the estimated
value of ϵP /kBT , we find numerically the minimum of
χ2 for a given value of ϵP /kBT by tuning the other three
parameters ω0, γ, and Fv (see Fig. S5). We estimate this
error by finding the range in ϵP /kBT for which χ2(ϵP ) <
1.5χ2

min, where χmin is the minimum value of χ2. The
value of 1.5 is chosen so that the probability of observing
a χ2 larger that this value is less than 1%. We find 0.15 <
ϵP /kBT < 0.32, which converts into a ±120 MHz error
in the estimation of g. In addition to this error, one
should include the imprecision in the calibration of the
displacement, since the fit is very sensitive to the absolute
value of the displacement. By performing the fit with
different values of the displacement calibration, we found
that ∆ϵP /kBT ≈ 0.15∆A/A, where ∆A is the systematic
error in the measurement of the displacement amplitude.
We estimate ∆A/A = 0.22, which gives an additional
±0.033 to the error bar for ϵP /kBT (and ±97 MHz error
for g/2π). Overall, we get the coupling constant g/2π =
646± 217 MHz.

���� ���� ���� ���� ����
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Fig. S5: Dependence of the χ2 on ϵP /kBT .

II. EXPERIMENTAL SECTION

A. Detection of mechanical vibrations and
estimation of the effective mass

We use a new two-source mixing method to measure
the spectral mechanical response of driven vibrations in
the linear and the nonlinear regimes. This method en-
ables us to extract the spectral mechanical response by
eliminating the inherent contribution of pure electrical
origin in electrical mixing measurements [21]. We de-
tect the vibrations by capacitively driving them with an
oscillating voltage with amplitude V ac

g and frequency ω,
applying the oscillating voltage with amplitude V ac

g with
a slightly detuned frequency ω + δω on the source elec-
trode, and measuring the current at frequency δω from
the drain electrode. To improve the sensitivity of the
current detection, we connect the drain electrode to a
RLC resonator placed nearby the device and a HEMT
amplifier at the 4 K stage of the dilution cryostat [22].
The RLC resonator enables us to measure the current at
a comparatively high frequency δω ≃ 1.2 MHz where the
1/f noise is significantly reduced. Without the induc-
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Fig. S6: Determination of the effective mass. (a) Spectral re-
sponse of the displacement amplitude of the driven vibrations
at T = 6 K. We chose the gate voltage close to the half max-
imum of the conductance peak, where the transconduction is
largest. The red solid line is the fit of the data to a Lorenzian
peak. (b) Force-displacement response curve at the mechan-
ical resonance frequency. (c) Effective modal mass measured
at different gate voltages. The black solid line indicates the
average effective mass of 4.5 ag. The confidence interval error
bars arise primarily from the uncertainty in the determination
of the dot-gate separation.

tance L of the RLC resonator, the frequency δω has to
be set to a lower frequency, typically 1− 10 kHz, within
the bandwidth imposed by the resistance of the sample
and the capacitance of the electrical cables that connect
the device to the measurement instruments. To obtain
the spectral mechanical response of driven vibrations, we
separate the signal of the mechanical vibrations from the
signal of pure electrical origin inherent to the mixing
method by properly tuning the phase of the measured
current [21]. This is important since the measured cur-
rent is otherwise a non-trivial combination of the vibra-
tion displacement and the electrical contribution. The
pure electrical contribution is used as a resource to cal-
ibrate the signal of the vibrations into units of meters.
Figure S6a shows the spectral response of driven vibra-
tions, which can be well described by a Lorentzian peak.

The effective mass of the measured mechanical eigen-
mode can be reliably determined, since the driven vi-
bration amplitude can be calibrated with the two-source
mixing method described above and since the capacitive
force in quantum dot electromechanical devices can be
accurately quantified. The mass m is quantified from
the slope of the force-displacement (F -x) response at

the mechanical resonance frequency in Fig. S6b using
x = (Q/mω2

m)F where the quality factor Q is estimated
from the spectral response in Fig. S6a and the capacitive
force is given by

F = βC ′
gV

dc
g V ac

g , (75)

β = 1− Cg

CΣ
+ f(1− f)

Cg

CΣ

e2/CΣ

kBT
, (76)

in the incoherent SET regime [21]. The dot-gate capac-
itance Cg, the total capacitance CΣ of the dot, and the
average charge occupation number f (with value between
0 and 1) are all quantified by standard electron transport
measurements. The spatial derivative of the dot-gate ca-
pacitance C ′

g is determined from Cg and the dot-gate sep-
aration d using the expression of the capacitance between
a cylinder and a plate that leads to C ′

g = Cg/d ln (2d/r).
Figure S6c shows the effective mass measured at twelve
different conductance peaks. The average effective mass
is m = 4.5±1.5 ag. The uncertainty in the mass determi-
nation comes from the mass fluctuations in Fig. S6c and
the uncertainty in the estimation of the dot-gate separa-
tion. We estimate the nanotube radius r = 1.5 nm from
the measured mass and the suspended nanotube length
determined by scanning electron microscopy. This value
is consistent with the radii of the nanotubes produced
with our chemical vapour deposition growth.

B. Electromechanical coupling and electron tunnel
rate

Figures S7a-h show the temperature dependence of
both the resonance frequency and the resonance width
of driven vibrations measured at the conductance peaks
for different gate voltages. The fitting of these data to
the predictions of the theory enable us to determine the
coupling g and the total electron tunnel rate Γe for these
different conductance peaks. The values of g and Γe are
shown in Figs. 4a,c of the main text. In the fitting we
only select the black data points in Figs. S7a-d with reso-
nance frequency ratios ωdip/ω

o
m between 0.75 and 1, since

it is the range of values expected by the predictions dis-
cussed in Sec. I E. The grey data points correspond to
data at lower temperature where a double-well potential
is expected to emerge, but further work in needed to char-
acterize this regime. The coupling of vibrations and SET
also results in dissipation. The mechanical resonance
width in the high temperature limit (kBT ≫ ℏg2/ωm)
is given by

∆ω = Γ0 +
1

2

ℏg2

kBT

ωo
m

Γe
(77)

where Γ0 is the damping due to other dissipation mecha-
nisms, see Eq. 25. We fit the measured resonance width
in the high temperature limit with Eq. 77 in Fig. S7e-h.
The electron tunnel rates Γe obtained from the fits are
shown in Fig. 4c of the main text.



10

0.1 1 10

0.7

0.8

0.9

1.0


d

ip
/

o m

 

0.1 1 10

0.7

0.8

0.9

1.0


d

ip
/

o m

 

 

0.1 1 10

0.7

0.8

0.9

1.0


d

ip
/

o m

 

 

0.1 1 10

0.7

0.8

0.9

1.0


d

ip
/

o m

T (K)

 

   =0.558 VV
g

dc

   =0.627 VV
g

dc

   =0.698 VV
g

dc

   =0.764 VV
g

dc

a

b

d

   =0.558 VV
g

dc

   =0.627 VV
g

dc

   =0.698 VV
g

dc

   =0.764 VV
g

dc

0.1 1 10
0.01

0.1

1

10




/2
 

(M
H

z
)

 

 

0.1 1 10
0.01

0.1

1

10




/2
 

(M
H

z
)

 

 

0.1 1 10
0.01

0.1

1

10




/2
 

(M
H

z
)

 

 

0.1 1 10
0.01

0.1

1

10




/2
 

(M
H

z)

T (K)

 

g

e

f

h

c

Fig. S7: Determination of the electromechanical coupling and the electron tunnel rate. (a)-(d) Temperature dependence of
the mechanical resonance frequency ωdip for different conductance peaks. We define ωdip as the lowest resonance frequency
when sweeping the gate voltage over a conductance peak (Fig. 3b of main text). The gate voltage of the resonance frequency
dip matches the gate voltage of the conductance peak. The black solid lines indicate the SET-based predictions. (e)-(h)
Temperature dependence of the mechanical resonance width for different conductance peaks. The black solid lines indicate
the SET-based predictions in the high temperature limit. The confidence interval error bars in panels (a)-(d) and (e)-(h) arise
primarily from the uncertainty in the fit of the measured temperature dependence of ωm and ∆ω, respectively, to the predictions
of the theory.
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Fig. S8: Spring hardening and softening in the nonlinear spectral response of mechanical vibrations in Device I at 6 K. (a)
Gate voltage dependence of the conductance. (b) Nonlinear response showing spring softening when the system is set at the
base of the conductance peak (blue point). (c) Nonlinear response showing spring hardening when the system is set at the top
of the conductance peak (red point).

C. Nonlinear spectral response of mechanical
vibrations

We show here that the nonlinear Duffing constant mea-
sured at 6 K changes sign when sweeping the gate volt-

age through the conductance peak, in agreement with
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the predictions of the theory in Sec. I F. This enables
us to rule out other possible origins for the nonlinear-
ity, such as the geometrical nonlinearity [23]. We ob-
serve both a softening and hardening spring behaviour
of the oscillator over a narrow range in gate voltage, see
Figs. S8a-c. Figure S8c shows the spectral response of
the spring hardening when the system is set at the con-
duction peak as indicated by the red dot in Fig. S8a. By
contrast, Fig. S8b shows the spring softening effect at
the base of the conductance peak as highlighted by the
blue dot in Fig. S8a. The change of the nonlinear Duffing
sign is consistent with the predictions of the theory de-
scribing the coupling of mechanical vibrations and SET
in the incoherent regime. Indeed, Eq. 48 indicates that
the Duffing constant is positive at the conductance peak
when the average charge occupation fraction f = 1/2,
while it becomes negative at the base of the peak when
f is sufficiently close to zero.

D. Responsivity of mechanical vibrations

We show that the observed reduction of the respon-
sivity at large drive is related to the thermal switching
between coexisting stable states in driven nonlinear oscil-
lators. Figures S9a,b show the drive dependence of both
the mechanical resonance frequency and the responsivity
of the mechanical vibrations when the system is set at
the very base of the conductance peak, see green dot in
Fig. S8a.

We do not observe any shift in resonance frequency,
indicating that the Duffing constant is becoming small.
This is expected from Eq. 48 when f ≃ 0, that is, when
the effect of the coupling between vibrations and SET
is suppressed. We do not observe any change of the re-
sponsivity either, showing that nonlinear damping plays
a negligible effect [24].

By contrast, Fig. S9d shows that the responsivity gets
lower when increasing the drive in the case where the
system is set at the top of the conductance peak, see red
dot in Fig. S8a. This reduction is well reproduced by
the SET-based predictions (Fig. 5c in main text), which
relates this behaviour to switching between coexisting
stable states in driven nonlinear oscillators, and not to
nonlinear damping.

E. Strong anharmonicity in two other devices

We demonstrate strong anharmonicity and ultra-
strong coupling regime in two other devices. Figure S10a
shows a conduction peak of Device II. The charging en-
ergy, the level spacing, and the electron tunnel rate are
Ec = 14 meV, ∆E = 2 meV, and ℏΓe = 2 µeV, re-
spectively, showing that SET is in the incoherent regime
(ℏΓe < kBT < ∆E,Ec). The high lever arm α =
0.83 arises from the short separation between the nan-
otube and the gate electrode. Figure S10b shows a
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Fig. S9: Responsivity of mechanical vibrations at 6 K. (a,b)
Resonance frequency and responsivity of the vibrations as a
function of the driving voltage with the system set at the
very base of the conductance peak in Fig. S8a (green dot).
(c,d) Same as (a,b) but with the system set on the top of the
conduction peak (red dot). The confidence interval error bars
in (a,c) and (b,d) arise from the uncertainty in the fitting of
the spectral response and the determination of the dot-gate
separation, respectively.

dip with a large suppression of the mechanical reso-
nance frequency when sweeping the gate voltage through
the conductance peak; the bare resonance frequency is
ωo
m/2π = 35.1 MHz. Figure S10c shows the tempera-

ture dependence of the mechanical resonance frequency
at the dip. The ratio ωdip/ω

o
m approaches 0.75 at low

temperature, indicating that the potential of the vi-
brations becomes strongly anharmonic. The red solid
line is the fit of the data to the SET-based predic-
tions, enabling us to quantify g/2π = 384 MHz. This
value is similar to the value g/2π = 395 MHz obtained
with independently measured parameters and using g =
e(C ′

g/CΣ)V
dc
g /

√
2mℏωo

m. These data indicate that the
device is in the ultrastrong coupling (g > ωo

m) and the
adiabatic regime (Γe > ωo

m), which satisfy the conditions
to realize strong vibration anharmonicity. Figures S10d-f
show the data of Device III. We obtain g/2π = 529 MHz
and ωo

m/2π = 89 MHz, which shows that device is in
the ultrastrong coupling regime. The measured suppres-
sion of the resonance frequency ωdip/ω

o
m reaches 0.93 at
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Fig. S10: Strong anharmonicity and ultra-strong coupling
regime in two other devices. (a,b) Conductance and me-
chanical resonance frequency as a function of gate voltage
at 170 mK for Device II. (c) Suppression of the resonance fre-
quency as a function of temperature at the conduction peak.
The solid red line is the SET-base prediction. (d,e) Con-
ductance and mechanical resonance frequency as a function
of gate voltage at 6 K for Device III. (f) Suppression of the
resonance frequency as a function of temperature at the con-
duction peak. The confidence interval error bars in panels
(c) and (f) arise primarily from the standard deviation in ωm

quantified from different driven spectral response measure-
ments.

500 mK. The device could not be measured at lower tem-
perature due to technical problems unrelated to the de-
vice itself. The anharmonicity is sizeable but not as large
as that in Devices I and II.

F. Parameters of Device I discussed in the main
text

Parameters Device I
Suspended nanotube
length (L)

1.2 µm

Nanotube radius (r) 1.5 nm
Effective mechanical
mode mass (m)

4.5 ag

Bare resonance frequency
(ωo

m/2π)
28.3-30.3 MHz

Nanotube-gate separation
(d)

150 nm

Zero point fluctuation
(xzp)

7.9 pm

Nanotube-gate
capacitance (Cg)

9.7 aF

Lever arm (α) 0.4− 0.5
Charging energy (Ec) 8.5− 6.5 meV
Level spacing (∆E) 0.97− 0.73 meV
Work function difference
between nanotube and
gate

120 mV

G. Literature review: estimation of xnl/xzp

Here we describe how we estimate the ratio xnl/xzp for
each device shown in Fig. 1 of the main text. Figure S11
shows the same figure but with an identification number
for each device.

Device 1 is a double-clamped single-wall carbon nan-
otube resonator [25]. The resonance frequency is ωo

m =
2π×46.35 MHz. The amplitude xnl = 4.2 nm is obtained
from the section X in the supplementary information (SI)
of Ref. [25]. We estimate the effective mass m ≈ 13.3 ag
from the geometry of the nanotube. The device is mea-
sured at 60 K.

Device 2 is a levitated silica nanoparticle with 100 nm
diameter [26]. The mass is m ≈ 1 fg. The reso-
nance frequency of the mode along the optical axis z is
ωo
m = 2π × 77.6 kHz. The device is cooled down to an

average phonon occupation of 0.65 quanta. The mechan-
ical linewidth ∆ω = 2π × 11.1 kHz is obtained from the
solid line in Fig. 2a. The amplitude xnl is obtained from

xnl =

√
8

3
√
3

∆ωωo
m

γ
(78)

We estimate xnl = 103.3 nm from Eq. (78) using the
value of γ = 4.9× 1024 m−2s−2 found in Ref. [27].
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Fig. S11: Same figure as Fig. 1 of the main text but with the
identification number of each device.

Device 3 is a single-layer drum-head molybdenum
disulfide (MoS2) resonator [28]. The resonance frequency
is ωo

m = 2π × 28.5 MHz. The amplitude xnl = 4.9 nm is
obtained from Fig. 4A. We estimate the effective mass
m ≈ 1.5 fg from the geometry of the device. The device
is measured at room temperature.

Device 4 is a levitated silica nanoparticle with 71.5 nm
radius [29]. The mass is m ≈ 2.8 fg. The resonance
frequency of the mode along the optical axis z is ωo

m =
2π × 104 kHz. The device is cooled down to an average
phonon occupation of 0.56 quanta. The decoherence rate
due to backaction and residual gas molecules is Γ = 2π×
19.4 kHz. The Duffing constant γ = 2.67× 1024 m−2s−2

is obtained from section D in the SI in Ref. [29]. We
estimate the amplitude xnl = 286.1 nm using Eq. (78).
Device 5 is a levitated silica nanoparticle with 75 nm

diameter [27]. The mass of the resonator is m ≈ 3 fg.
The resonance frequency of the mode along the optical
axis x is ωo

m = 2π×125 kHz. The amplitude xnl = 48 nm
is obtained from Fig. S3c in the SI of Ref. [27].

Device 6 is a single-layer drum-head MoS2 res-
onator [30]. The resonance frequency is ωo

m = 2π ×
30.5 MHz. The amplitude xnl ≈ 2.1 nm is obtained from
Fig. 5b using the displacement–to–voltage conversion in

the section S3 of the SI. We estimate the effective mass
m ≈ 5.8 fg from the geometry of the device. The device
is measured at room temperature.
Device 7 is a double-clamped graphene resonator [31].

The resonance frequency is ωo
m = 2π × 65 MHz. The

amplitude xnl = 1.1 nm is obtained from Fig. 2d. The
effective mass m ≈ 4.9 fg is obtained from Fig. 3a (De-
vice 1). The device is measured at room temperature.
Device 8 is a double-clamped bi-layer MoS2 res-

onator [32]. The resonance frequency is ωo
m = 2π ×

54 MHz. The amplitude xnl = 1.0 nm is obtained from
Fig. S3c. The effective mass m ≈ 6.5 fg is obtained from
Table S2 (Device 1) in the SI. The device is measured at
room temperature.
Device 9 is a drum-head graphene resonator [33]. The

resonance frequency is ωo
m = 2π× 33.3 MHz. The ampli-

tude xnl = 0.4 nm is obtained from Fig. 5a. The effective
mass m ≈ 36.0 fg is obtained from Fig. 3e. The device
is measured at 30 mK.
Device 10 is a drum-head graphene resonator [34]. The

resonance frequency is ωo
m = 2π × 44 MHz. The ampli-

tude xnl = 0.2 nm is obtained from Fig. S13. The effec-
tive mass m ≈ 56.0 fg is obtained from Table S1 (Device
II) in the SI. The device is measured at 15 mK.
Device 11 is a double-clamped platinum nanowire res-

onator [35]. The resonance frequency is ωo
m = 2π ×

45.35 MHz. The amplitude xnl = 2.68 nm is obtained
from the main text. The effective mass m ≈ 23.2 fg is
estimated from the geometry of the device. The device
is measured at 20 K.
Device 12 is a drum-head 5 nm thick graphene res-

onator [36]. The resonance frequency is ωo
m = 2π ×

14.7 MHz. The amplitude xnl = 2.5 nm is obtained from
Fig. 1b. The effective mass m ≈ 56.4 fg is estimated
from the geometry of the device. The device is measured
at room temperature.
Device 13 is a double-clamped silicon carbide (SiC)

beam resonator [37]. The resonance frequency is ωo
m =

2π× 8.78 MHz. The amplitude xnl = 1.2 nm is obtained
from Fig. 2 at V dc

g = 0. The effective mass m ≈ 0.36 pg
is estimated from the geometry of the device. The device
is measured at room temperature.
Device 14 is a double-clamped palladium beam res-

onator [38]. The resonance frequency is ωo
m = 2π ×

20.26 MHz. The amplitude xnl = 0.36 nm is obtained
from Fig. 2B (iii). The effective mass m ≈ 0.81 pg is
estimated from the geometry of the device (sample B1).
The device is measured at 1 K.
Device 15 is a double-clamped silicon nitride (SiN)

beam resonator [39]. The resonance frequency is ωo
m =

2π × 6.53 MHz. The mechanical linewidth ∆ω = 2π ×
20 Hz is obtained from Fig. S3b. The value of Duffing
constant γ = 1.54 × 1026 m−2s−2 is obtained from Eq.
S39 in the SI. We estimate the amplitude xnl = 7.2 nm
using Eq. (78).The effective mass m ≈ 2.23 pg is esti-
mated from the geometry of the device. The device is
measured at room temperature.

Device 16 is a double-clamped beam resonator pat-
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terned from a four-layer stack of aluminum nitride (AlN)-
molybdenum (Mo)-AlN-Mo [40]. The resonance fre-
quency is ωo

m = 2π × 14.31 MHz. The amplitude
xnl = 9.6 nm is obtained from Fig. 1d. The effective
mass m ≈ 3.5 pg is estimated from the geometry of the
device. The device is measured at room temperature.

Device 17 is a goal-post shaped silicon resonator [41].
The resonance frequency is ωo

m = 2π × 7.1 MHz. The
amplitude xnl = 60 nm is obtained from Fig. 2. The
effective mass m ≈ 1.3 pg is taken from the main text.
The device is measured at 4.2 K.
Device 18 is a aluminium drum-head resonator [42].

The resonance frequency is ωo
m = 2π × 15.1 MHz. The

device is cooled down to an average phonon occupation of
0.3 quanta. The mechanical linewidth ∆ω = 2π×400 Hz
is obtained from Fig.1. The value of Duffing constant
γ = 5.05 × 1027 m−2s−2 is obtained from Ref. [43] for
a similar drum resonator. We estimate the amplitude
xnl = 8.5 nm using Eq. (78). The effective mass m ≈
12 pg is estimated from the geometry of the device. The
device is measured at 0.5 mK.
Device 19 is a double-clamped SiN beam resonator [44].

The resonance frequency is ωo
m = 2π × 0.64 MHz. The

amplitude xnl = 20 nm is obtained from Fig. 1c. The ef-
fective mass m ≈ 37.6 pg is estimated from the geometry
of the device. The device is measured at 5 K.

Device 20 is a drum-head resonator made from a
superconducting alloy of Molybdenum and Rhenium
(MoRe) [45]. The resonance frequency is ωo

m = 2π ×
7.29 MHz. The amplitude xnl = 0.95 nm is obtained
from Fig. 4.4a (yellow curve) in Ref. [46]. The effective
mass m ≈ 0.32 ng is estimated from the geometry of the
device given in the SI. The device is measured at 20 mK.

Device 21 is a soft clamped SiN membrane patterned
with a phononic crystal structure resonator [47]. The res-
onance frequency is ωo

m = 2π × 1.46 MHz. The mechan-
ical linewidth ∆ω ≈ 2π × 1.8 mHz is obtained from Fig.
4b. The value of Duffing constant γ = 1.15×1024 m−2s−2

is obtained from Eq. 10 and Fig. 2b in the main text.
We estimate the amplitude xnl = 0.37 nm using Eq. (78).
The effective mass m ≈ 4.5 ng is taken from the Ref.
[48]. The device is measured at room temperature.

Device 22 is a polycrystalline silicon cantilever res-
onator [49]. The resonance frequency is ωo

m = 2π ×
1.5 MHz. The amplitude xnl = 450 nm is obtained from
Fig. 6. The effective mass m ≈ 1.55 pg is estimated from
the geometry of the device. The device is measured at
room temperature.

Device 23 is a double-clamped SiN beam resonator [50].
The resonance frequency is ωo

m = 2π × 0.66 MHz. The
device is externally driven by Gaussian noise force. The
variance of the displacement noise ∆x2

1 = 5 × 10−14 m2

is taken from the first data point in the inhomogeneous
broadening regime (IB) in Fig. 3a. We estimate xnl =√
∆x2

1 = 224 nm. The effective mass m ≈ 13.5 pg is
estimated from the geometry of the device.

Device 24 is a meshed SiN membrane resonator [51].
The resonance frequency is ωo

m = 2π × 4.13 MHz. The

amplitude xnl = 15 nm is estimated theoretically in the
paper. This value is very close to the experimentally
observed results shown in Fig. 4c and 5a. The linear
spring constant k = 253 N/m is obtained from the paper.
We estimate the effective mass m = k/ωo

m
2 = 37.6 ng.

The device is measured at room temperature.
Device 25 is a commercially available SiN membrane

resonator from Norcada Inc [52]. The resonance fre-
quency is ωo

m = 2π × 133.8 kHz. The amplitude xnl =
3.1 nm is obtained from the inset of Fig. 2. The effective
mass m ≈ 37.5 ng is estimated from the geometry of the
device. The device is measured at room temperature.
Device 26 is a aluminium drum-head resonator [53].

The resonance frequency is ωo
m = 2π × 13.0 MHz. The

device is cooled down to an average phonon occupation of
0.38 quanta. The mechanical linewidth is obtained from
Fig. 2e. We use Eq. S31 and Eq. S32 to estimate the
mechanical linewidth ∆ω = 2π × 331 kHz. We estimate
xnl = 245 nm from Eq. (78) using the value of γ = 4.35×
1027 m−2s−2 found in Ref. [43] for a drum resonator.
The effective mass m ≈ 14.3 pg is estimated from the
geometry of the device.
Device 27 is a double-clamped GaAs resonator mem-

brane resonator [54]. The resonance frequency is ωo
m =

2π × 138 kHz. The amplitude xnl ≈ 14 nm is obtained
from Fig. 1c and using the voltage to displacement con-
version ≈ 70 nm/µV. The effective mass m ≈ 78 ng is
estimated from the geometry of the device. The device
is measured at 4.2 K.
Device 28 is a SiN cantilever resonator [55]. The reso-

nance frequency is ωo
m = 2π × 951 kHz. The amplitude

xnl = 2.75 µm is obtained from Fig. 3c. The effective
mass m ≈ 34.4 pg is estimated from the geometry of the
device. The device is measured at room temperature.

Device 29 is a SiN cantilever resonator [55]. The reso-
nance frequency is ωo

m = 2π × 150 kHz. The amplitude
xnl = 8 µm is obtained from Fig. 3d. The effective mass
m ≈ 89.5 pg is estimated from the geometry of the de-
vice. The device is measured at room temperature.

Device 30 is a soft clamped SiN membrane patterned
with a phononic crystal structure resonator [56]. The
resonance frequency is ωo

m = 2π × 1.14 MHz. The
device is cooled down to an average phonon occupa-
tion of 0.3 quanta. The effective mechanical linewidth
∆ω = 2π × 2 kHz is obtained from the blue data points
in Fig. 4a. We estimate xnl = 347 nm from Eq. (78) using
the value of γ = 1.15 × 1024 m−2s−2 found in Ref. [47].
The effective mass m ≈ 4.5 ng is taken from the Ref.
[48].

Device 31 is a highly doped polycrystalline silicon plate
resonator [57]. The resonance frequency is ωo

m = 2π ×
73 kHz. The mechanical linewidth ∆ω = 2π × 0.31 Hz
is obtained from Fig. 3b. The value of Duffing constant
γ = 2.64× 1020 m−2s−2 is obtained from the main text.
We estimate xnl = 72.2 nm from Eq. (78). The effective
mass m ≈ 0.7 µg is estimated from the geometry of the
device. The device is measured at room temperature.

Device 32 is a SiN membrane resonator [58]. The reso-
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nance frequency is ωo
m = 2π× 188.1 kHz. The amplitude

xnl = 0.59 µm is obtained from Fig. 2d. The effective
mass m ≈ 0.23 µg is estimated from the geometry of the
device. The device is measured at room temperature.

Device 33 is a goal-post shaped Si resonator [59]. The
resonance frequency is ωo

m = 2π×1.9 kHz. The mechani-
cal linewidth ∆ω = 2π×40 mHz and the Duffing constant
γ = 7.9 × 1013 m−2s−2 are obtained from Fig. 3b. We
estimate the amplitude xnl = 7.64 µm using Eq. (78).
The effective mass m ≈ 4.9 µg is obtained from fig. 2d.
The device is measured at 4.0 K.
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sel, and M. A. Sillanpää, Physical Review Letters 115,
243601 (2015).

[54] I. Mahboob and H. Yamaguchi, Nature nanotechnology
3, 275 (2008).

[55] L. Villanueva, R. Karabalin, M. Matheny, D. Chi,
J. Sader, and M. Roukes, Physical Review B 87, 024304
(2013).

[56] M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and
A. Schliesser, Nature 563, 53 (2018).

[57] L. Huang, S. Soskin, I. Khovanov, R. Mannella, K. Nin-
ios, and H. B. Chan, Nature communications 10, 3930
(2019).

[58] T. Manzaneque, M. K. Ghatkesar, F. Alijani, M. Xu,
R. A. Norte, and P. G. Steeneken, arXiv preprint
arXiv:2205.11903 (2022).

[59] E. Collin, Y. M. Bunkov, and H. Godfrin, Physical Re-
view B 82, 235416 (2010).

https://doi.org/10.1038/s41467-020-15433-3
https://doi.org/10.1038/s41467-020-15433-3

	SpringerNature_NatPhy_2065_ESM.pdf
	Contents
	Theoretical description
	Structure of the section
	Electronic transport
	Back-action on the oscillator
	Effective potential
	Fluctuation spectrum and softening of the mechanical mode
	Coefficients of a series expansion of the potential in the displacement and estimation of the thermal energy stored in the non-harmonic part of the potential
	Nonlinear Duffing response in presence of thermal fluctuations
	Procedure used to fit the nonlinear Duffing response

	Experimental Section
	Detection of mechanical vibrations and estimation of the effective mass
	Electromechanical coupling and electron tunnel rate 
	Nonlinear spectral response of mechanical vibrations
	Responsivity of mechanical vibrations
	Strong anharmonicity in two other devices
	Parameters of Device I discussed in the main text
	Literature review: estimation of xnl/xzp 

	References




