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Steady-state Peierls transition in nanotube quantum simulator
Lin Zhang 1✉, Utso Bhattacharya 1, Adrian Bachtold1, Stefan Forstner1, Maciej Lewenstein 1,2, Fabio Pistolesi 3 and
Tobias Grass1,4,5

Quantum dots placed along a vibrating nanotube provide a quantum simulation platform that can directly address the electron-
phonon interaction. This offers promising prospects for the search of new quantum materials and the study of strong correlation
effects. As this platform is naturally operated by coupling the dots to an electronic reservoir, state preparation is straightforwardly
achieved by driving into the steady state. Here we show that for intermediate electron-phonon coupling strength, the system with
spin-polarized quantum dots undergoes a Peierls transition into an insulating regime which exhibits charge-density wave order in
the steady state as a consequence of the competition between electronic Coulomb repulsive interactions and phonon-induced
attractive interactions. The transport phenomena can be directly observed as fingerprints of electronic correlations. We also present
powerful methods to numerically capture the physics of such an open electron-phonon system at large numbers of phonons. Our
work paves the way to study and detect correlated electron-phonon physics in the nanotube quantum simulator with current
experimentally accessible techniques.
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INTRODUCTION
In the search for novel materials, the simulation of quantum
matter is an extremely demanding computational task which is
expected to profit substantially from the surge of quantum
technologies. Quantum algorithms for programmable quantum
computers offer the most flexible approaches1–3, but tailor-made
quantum simulation devices are particularly well suited for large-
scale simulations. For instance, tremendous efforts have been
made to simulate graphene-like materials using synthetic
quantum systems4, such as artificial semiconductor lattices5, cold
atoms in optical lattices6,7, or photonic crystals8. However, in order
to reach the complexity of real materials, quantum simulators
need more controllable degrees of freedom. Specifically, apart
from electrons, also phonons are fundamental ingredients of
quantum materials, and the ubiquitous electron-phonon interac-
tion is a central issue in condensed matter and material
physics9–11. Many important and interesting phenomena are
rooted in this interaction, dating back to the seminal work on
Bardeen-Cooper-Schrieffer superconductivity12, or charge-density
wave (CDW) order induced by the Peierls instability13.
An archetypal and simplified Hamiltonian with the electron-

electron and electron-phonon interactions is the so-called
Hubbard-Holstein model, which has been studied vastly14–21.
Although many numerical and analytical approaches have been
employed to solve this model, including quantum Monte Carlo22,
density-matrix renormalization group (DMRG)23, variational
ansatz24,25, dynamical mean-field theory (DMFT)26, and density-
matrix embedding theory (DMET)27, it is still hard to study the
strongly coupled electron-phonon systems for the large number
of phonons. Approaching the electron-phonon models via
quantum simulation and quantum computation techniques is
challenging as well. With phonons being essentially absent in
optical lattices, atomic quantum simulators rely on the explicit
construction of dynamical lattices as recently proposed in refs. 28,29

or in the context of simulation of lattice gauge theory

(cf. refs. 30,31), characterized by dynamical degrees of freedom
on the bonds of the lattice. On the other hand, phonons occur as a
natural ingredient in trapped ion quantum simulators. These
systems are based on engineering the spin-phonon interactions,
and hence appear to be quite natural candidates for the
simulation of Holstein models32,33. However, mapping the trapped
ions system onto electron-phonon problems via Jordan-Wigner
transformation is not straightforward due to long-range couplings.
Another approach could be the use of digital quantum computers.
In this context, a scheme of mapping electron-phonon systems
onto qubits has been proposed in ref. 34.
On the other hand, there are also quantum simulation platforms

which themselves consist of electrons and phonons and hence
appear to be ideally suited for the study of quantum materials.
One such platform that has recently been proposed in ref. 35 is
quantum dots defined on a suspended carbon nanotube, where
the phononic degrees of freedom are naturally provided by the
flexural modes of the nanotube and the electrons localized in
quantum dots interact with the mechanical modes electrostati-
cally; see Fig. 1a for a sketch of the setup. Many parameters of the
system can be tuned either at the fabrication stage or during
the experiments (Fig. 1b). Especially, the short and controllable
separation between the nanotube and gates allows one to reach a
very large electron-phonon coupling strength36. The nonlocal
nature of phonon modes in this system also provides opportu-
nities to explore physics beyond the Hubbard-Holstein model.
Although the system is now limited in size, advances in
nanofabrication make it promising to fabricate a carbon nanotube
with many quantum dots. On the other hand, even with the
current small system, there are many interesting physical and
technological phenomena associated, such as the phonon-
induced pairing35 and the nanomechanical qubit37.
As a simultaneous challenge and opportunity, one particular

feature of this system is that the quantum dot setup can barely be
viewed as an isolated quantum system, but rather as an open
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quantum system which is coupled to a fermionic environment via
leads. It would be important and experimentally relevant to be
able to describe the transport and driving in this challenging
system with many electronic and phononic degrees of freedom.
While the open system properties of single and double dots
coupled to a single phonon mode has been studied exten-
sively38–54, the case of multiple dots has never been considered to
our knowledge and may support interesting physics beyond
single and double dots.
In this work, we study the correlated physics in a nanotube

quantum simulator with four spin-polarized quantum dots
coupled to the leads. We develop methods to attack the challenge
of theoretically describing this electron-phonon open quantum
system problem. Specifically, we generalize the shift method,
developed in ref. 35 to facilitate the computational treatment of
equilibrium systems with large phonon numbers, to the case of
open quantum systems. This treatment then allows us to study
transport through the device, a great opportunity to detect
important system properties. In particular, the electric current
provides an immediate smoking gun of a striking behavior of the
device: Upon increasing the electron-phonon coupling strength, a
Peierls instability turns the system into an insulator with
alternating CDW pattern of empty and occupied quantum dots
as a consequence of the competition between electronic Coulomb
repulsive interactions and phonon-induced attractive interactions,
which is beyond the standard Hubbard-Holstein model. Although
such a CDW order is also present without coupling the system to
leads, observing it as a steady state property in open quantum
system provides a feasible route for the preparation as well as the
detection of this intriguing phenomenon. Especially, despite the
fact that the current always vanishes at low enough bias due to
the finite charge gap in the considered finite-size system, the
different behavior of critical bias voltage for nonvanishing current
as we increase the electron-phonon coupling strength directly
reflects the different nature of insulating steady state, identifying
the Peierls transition.

RESULTS
System
The central component of our system, depicted in Fig. 1a, is a
suspended carbon nanotube which hosts up to four electrons on
equally spaced quantum dots spin-polarized by a large magnetic
field, interacting among themselves through long-range Coulomb
interactions and with the nanotube’s flexural modes. Accordingly,
the system Hamiltonian

HS ¼ He þ Hp þ He�p (1)

consists of a Hubbard-like electronic part

He ¼
X
i

�t0ðdyi diþ1 þ H:c:Þ þ εni þ
X
j>i

Uj�ininj

" #
; (2)

a phononic part

Hp ¼
X
α

_ωαb
y
αbα; (3)

and the coupling between electrons and phonons

He�p ¼
X
i;α

gi;αniðbα þ byαÞ: (4)

Here di is the spinless annihilation operator for electron on the i-th
quantum dot, and ni ¼ dyi di is the electron number operator. Note
that a single quantum dot cannot be occupied by two electrons
due to the Pauli exclusion principle. The bosonic operator bα is the
annihilation operator of the phonon mode α with frequency
ωα= αω0 being an integer multiple of the fundamental frequency
ω0, and ℏ is the reduced Planck constant. The electrons couple to
the phonons through the capacitance between the quantum dots
and gates, which is modulated by the displacement of the
nanotube. For the coupling strength gi,α, we assume the validity of
the guitar-string model35, in which we expand the capacitance
charge energy at small displacement in terms of different
oscillating modes and integrate the coupling strength between
the charge and mode displacement bα þ byα over the dot
extension (assumed to be 1/4 of the nanotube length), yielding
gi;α ¼ g0ð8=πÞα�3=2 sin½ð2i � 1Þαπ=8� sinðαπ=8Þ with an overall
coupling strength g0 that can be tuned electrostatically35. We
also assume that the electronic hopping t0 is uniform and
between nearest neighbors only. A local chemical potential ε is
included to control the particle number. The parameters Uj−i with
j > i describe screened Coulomb interactions. An overview of
realistic parameter ranges is illustrated in Fig. 1b.
For a quantum simulation of the transport behavior of the

electron-phonon system, we need to take into account a
fermionic environment which couples to the nanotube via two
leads at the left (L) and right (R) end. The Hamiltonian of the
environment reads

HE ¼
X
ℓk

εℓkc
y
ℓkcℓk (5)

for ℓ= L, R, where the electrons in leads are denoted as c and are
labeled by the momentum k. The coupling between the system
and leads is given by

HSE ¼
X
ℓk

tℓkd
y
ℓcℓk þ H:c:; (6)

where dℓ denotes a system electron in the dot at the left or right
end. In the following, we consider the wide-band limit for the
leads with constant density of states ν. We also assume the

Fig. 1 Setup and tuning range of parameters. a Schematic picture of the system. A suspended nanotube hosts four spin-polarized quantum
dots. The back gates control the local chemical potential and hoppings between dots. The short separation between the nanotube and gates
allows one to reach a very large electron-phonon coupling strength. The whole system couples to the left and right leads controlled by a bias
voltage Vbias. b The typical tuning range of different parameters. Here the fundamental frequency ω0 is divided by 2π, and other parameters
are divided by 2πℏ.
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tunneling amplitudes to be energy-independent and symmetric,
i.e., tℓk= tℓ and tL= tR. Then the coupling strength between
the system and leads can be captured by the tunneling rate
Γ= 2πν∣tL/R∣2.

Quantum master equation
The Hamiltonian HSE consists of four different tunneling processes
between the system and leads: (i, ii) an electron entering the
system from the left or right lead; (iii, iv) an electron leaving the
system to the left or right lead. It is clear that these processes
occur only in a particular region of the system and depend on the
occupation of the environment level εℓk ¼ En;in � Enþ1;inþ1 , where
En;in is the system energy for the in-th eigenstate of HS with total
electron number n. For systems with the tunneling rate Γ much
smaller than the temperature kBT (kB is the Boltzmann constant),
we can use the phenomenological position and energy resolving
Lindblad master equation55 to describe the reduced density
matrix ρ of the system coupled to leads

_ ∂ρ
∂t ¼ �i½HS; ρ� þ

P
ℓ;α¼±

ðLℓαρLyℓα

� 1
2 ρL

y
ℓαLℓα � 1

2 L
y
ℓαLℓαρÞ � L½ρ�:

(7)

Here the Lindblad operators are given by

Lℓþ ¼
P

n;in ;inþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ℓðEnþ1;inþ1 � En;inÞΓ

p
´ T ðℓÞnþ1;inþ1;n;in Enþ1;inþ1

�� �
En;in
� �� (8)

for processes (i, ii) and

Lℓ� ¼
P

n;in ;in�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1� f ℓðEn;in � En�1;in�1Þ�Γ
p

´ T ðℓÞ�n;in;n�1;in�1 En�1;in�1
�� �

En;in
� �� (9)

for processes (iii, iv), where we have T ðℓÞn;in;n�1;in�1 ¼
hEn;in jdyℓjEn�1;in�1i after rewritting the tunneling Hamiltonian HSE

into the eigenstate basis of HS. The Fermi-Dirac distribution

f ℓðxÞ ¼ ½eðx�μℓÞ=kBT þ 1��1 with temperature T and chemical
potential μℓ captures the occupation of environment levels in
the leads. It is clear that the rate of adding an electron to the
system should be proportional to the occupation in the leads,
while it is hard to remove an electron from the system if the
corresponding state has already been occupied in the leads.
Here we use the bias voltage Vbias to control the chemical
potentials in leads and have μL/R= ± eVbias/2 (e is the elementary
electric charge), which is an important tuning knob in the open
quantum system.
The Lindblad master equation describes the evolution into the

steady state ρss, which is obtained in the infinite time limit, i.e., for
t→∞, or by diagonalizing the Liouvillian superoperator L. A
challenge to solve this problem is how to treat the phononic
degrees of freedom for its infinite-dimensional nature. Even after
truncating the phononic Hilbert space, for realistic system
parameters the phonon number remains beyond our numerical
capability (limited to tens of phonons). For this, we have
developed different methods which facilitate the description by
shifting the phononic vacuum into a state with finite phonon
number and only taking into account a small number of necessary
(tilded) phononic states that are coupled to the electronic states
effectively. In the following, we would first focus on the physical
results and shall describe the details of shift method in the
“Methods” section for interested readers.
We would like to mention that if the tunneling rate Γ is much

smaller than the temperature kBT and the energy splittings
between states with the same number of electrons, a convenient
simplification to the Lindblad master equation can be achieved by
ignoring coherences56,57, and we only need to consider the

diagonal terms of the density matrix, ρn;in � ρn;in ;n;in . This
approximation leads to the Pauli master equation

_ ∂
∂t ρn;in ¼

P
ℓ

P
in± 1

j½Lℓ ∓ �n;in ;n± 1;in± 1
j2ρn± 1;in± 1

�P
ℓ

P
in± 1

j½Lℓ± �n± 1;in± 1;n;in j
2ρn;in :

(10)

Although this approximation is not always valid, we can use the
phonon number from Pauli master equation as a good starting
point for the shift method; see “Methods”.

Role of electron-phonon coupling in equilibrium
The main application of our quantum simulation platform is to
study the correlated electron-phonon physics. Hence we focus on
the role played by the tunable electron-phonon coupling. Before
turning our attention to the phonon-induced transport behavior
in the steady state, we will first briefly show the role of electron-
phonon coupling in the equilibrium system.
The role of electron-phonon coupling in equilibrium can be

most easily observed in the case of t0→ 0. In this atomic limit, the
electron-phonon problem can be solved analytically via the Lang-

Firsov transformation U ¼ e�
P

i;α
gi;αniðbyα�bαÞ=_ωα , which yields the

effective system Hamiltonian

~HS ¼ Hejt0¼0 þ Hp �
X
α

1
_ωα

X
i

gi;αni

 !2

: (11)

Here the electron-phonon coupling is replaced by an effective
phonon-induced long-range electron-electron interaction. The
first role played by electron-phonon coupling is that the phonons
mediate an attractive interaction, thus lowering the energy of
states with more electrons; see Fig. 2a for the electron number
Ne= 〈∑ini〉 in equilibrium. Second, even at a fixed electron
number, the electron-phonon coupling has a strong effect on
the distribution of electrons along the quantum dots, as shown in
Fig. 2b for Ne= 2. The phonon-induced attractive electron-
electron interaction selects the two inner dots ○●●○, which
directly competes with the repulsive Coulomb interactions that
favor the two-electron state ●○○● occupying the two outer
dots. Interestingly, an alternating CDW pattern●○●○/○●○● of

Fig. 2 Role of electron-phonon coupling in the equilibrium
system at atomic limit t0= 0. a Electron number Ne in equilibrium
as a function of local chemical potential ε/U1 and electron-phonon
coupling strength g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ω0U1
p

. b Energy of different electron
configurations with fixed Ne= 2. Here we have used the single-
mode approximation, which is verified by comparing the results
obtained from single mode (solid lines) and multi (e.g., 100
considered here) modes (dots). The single- and multi-mode
scenarios are found to agree with each other qualitatively well.
The transition points between patterns ●○○● (○●●○) and
●○●○/○●○● are also presented in the two-electron region of
(a) by dashed lines, respectively. Here we set U1/2πℏ= 200 GHz,
U2/2πℏ= 20 GHz, U3/2πℏ= 2 GHz, and ω0/2π= 3 GHz, which are
within the typical tuning range of parameters shown in Fig. 1b.
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empty and occupied dots occurs as a compromise between the
two interactions for intermediate values of electron-phonon
coupling.
A few remarks are in order. First, it is clear from the Lang-Firsov

transformation that the phonon-induced electron-electron inter-
action is proportional to g20=_ω0. For a large fundamental
frequency, we also need a large electron-phonon coupling to
obtain the same phonon-induced electron-electron interaction
strength, but the underlying physics remains the same in different
parameter regime. For this and to avoid a too large phononic
Hilbert space for open quantum systems, we set ω0/2π= 3 GHz for
most of our calculations, which is slightly larger than the typical
value in experiments but is still reasonable; see Fig. 1b. Second,
since the phonon-induced interaction decays in the scaling of
Oðα�4Þ for higher phonon modes, the higher modes would only
affect the physics quantitatively but not qualitatively; see Fig. 2b
for a comparison between the single-mode approximation and
multi-mode scenario. Hence it is a good approximation to
consider only the lowest phonon mode without losing the
essential physics. In the following studies, we will always take
this approximation and omit the subscript index of the lowest
phonon mode (i.e., b= b1) unless stated otherwise. Third, we note
that the three equilibrium regimes discovered above are not
limited to the atomic limit but still survive for a small hopping
coefficient t0; see Figs. 3 and 5. The finite hopping problem is
solved via the equilibrium shift method proposed in ref. 35; see
also “Methods” for a review. We fix the hopping coefficient as
t0/2πℏ= 5 GHz in the following studies of open quantum systems.
For this value, the above discussed regimes are still clearly present.

Phonon-induced transport behavior
With the above insight for the equilibrium properties of the
system, we now characterize the steady state. The results are

presented in Fig. 3. Since the local chemical potential ε also
influences the electron population (cf. Fig. 2a) and the interesting
physics mainly occurs in the regime with Ne= 2, here we choose a
local chemical potential such that the equilibrium state with two
electrons starts from g0= 0. In Fig. 3a, we plot the lowest energies
of different electron number sectors for the chosen local chemical
potential ε/2πℏ=−30 GHz. The equilibrium ground state changes
from the two-electron sector to the four-electron sector upon
increasing the electron-phonon coupling. The range of electron-
phonon coupling strength with two electrons is also large for this
local chemical potential, where different two-electron regimes can
happen, although the range for four electrons is even larger and
goes to infinity. We note that since the region for equilibrium state
○●●○ is quite small compared to other two-electron regimes
and is very close to the four-electron state for the local chemical
potentials with two-electron states starting from g0= 0 in
equilibrium (see Fig. 2a), we mainly focus on the non-
equilibrium properties of patterns ●○○● and ●○●○/○●○●
in the following studies.
The electronic transport properties in steady state for various

bias voltage Vbias are shown in Figs. 3b–e, where both the results
from Pauli master equation and the generalized shift method for
open electron-phonon systems (see “Methods”) are provided and
match with each other qualitatively. For the electron number
Ne ¼ Tr½ρss

P
ini�, we observe a similar behavior like the one

presented in equilibrium regime that upon increasing the
electron-phonon coupling, the number of electrons in the steady
state is increased; see Fig. 3b. But now the electron numbers are
not quantized in general due to the mixing of eigenstates in
different electron number sectors. Strikingly, we also find plateaus
with electron numbers Ne ≈ 2 and Ne ≈ 4 in the steady state for a
moderate bias voltage. Since it is necessary that the number of
electrons fluctuate over time in order to have sequential transport,

Fig. 3 Phonon-induced transport behavior. a Lowest energies of the system in different electron number sectors. Upon increasing the
electron-phonon coupling g0, the electron number of ground state changes from two electrons to four electrons for the chosen local chemical
potential ε/2πℏ=− 30 GHz. b–e Electron number Ne, current I, CDW structure factor C, and order parameter O in the steady state for various
Vbias obtained from the Pauli master equation (dashed lines) and shift method without updating the shift parameter (solid lines); see
“Methods”. In d and e, we also plot the CDW structure factor C and order parameter O of equilibrium two-electron states (black lines) for the
convenience of comparison. The black dashed vertical lines in a–e label the approximate transition points in the two-electron sector identified
from the equilibrium CDW structure factor and order parameter. f Phonon number Np obtained from the Pauli master equation. The insert
shows the variance of phonon operator, Var(b). Here we truncate the phononic Hilbert space to a finite-dimensional Hilbert space with
maximal 1000 phonons for the Pauli master equation. The shift method for eVbias/2πℏ= 80, 100, and 120 GHz is performed within a Hilbert
space with maximal 40, 45, and 50 tilded phonons, respectively. Other parameters are t0/2πℏ= 5 GHz, U1/2πℏ= 200 GHz, U2/2πℏ= 20 GHz,
U3/2πℏ= 2 GHz, ω0/2π= 3 GHz, Γ/2πℏ= 1 GHz, and kBT/2πℏ= 2 GHz.
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a constant and integer value of Ne signals a blockade of the steady
state current I= IL=−IR defined by

Iℓ ¼ ð1=2π_ÞTr½ρssðLyℓþLℓþ � Lyℓ�Lℓ�Þ�; (12)

which characterizes the net rate of electron number flow through
the system and vanishes in these regions; see Fig. 3c.
While the insulating nature of four-electron state is a trivial

consequence of Pauli blocking, it is a very intriguing behavior for
Ne= 2. In fact, this insulating regime coincides with a CDW pattern
in the electronic configuration. To detect this pattern, we
introduce the structure factor

C ¼
X
i;j

ð�1Þi�jTr½ρssninj�; (13)

which takes the value C= 4 in the perfect CDW order. Indeed, the
Ne= 2 plateau in Fig. 3b coincides with CDW order; see Fig. 3d. As
indicated by the black line, this regime also exhibits CDW order in
equilibrium. Therefore, this pattern is not induced by the
tunneling to leads but indeed by the competition between
repulsive Coulomb interaction and phonon-induced attractive
electron-electron interaction.
We also introduce the order parameter

O ¼ Tr½ρssn2n3� � Tr½ρssn1n4� (14)

to characterize the electron configurations ○●●○/●○○●
through values O= ±1, and O= 0 for the CDW pattern. The
steady-state values of O are plotted in Fig. 3e, together with the
equilibrium value of two-electron states. For small electron-phonon
coupling, while the equilibrium system exhibits the pattern
●○○●, the order parameter O is highly reduced in the non-
equilibrium steady state due to the enhanced mixing between
patterns ●○○● and ●○●○/○●○● and with the one-electron
eigenstates. Hence it is hard to distinguish the weakly coupled
regime from the CDW order via the order parameter O, unlike the
CDW structure factor C.
We note that the current is always small at low enough bias due

to the finite charge gap in the considered finite-size system. To
further identify the nature of insulating steady state at certain
coupling strength, we define the critical bias voltage Vbias,c, at
which the corresponding current is 10−3 GHz, a very small value
for the used tunneling rate. Since the critical bias voltage is
directly related to the charge gap and the changes of energy
spectra as we increase the electron-phonon coupling are given by
ðPigi;1niÞ2=_ω0 in the atomic limit [cf. Eq. (11)], we would expect
that the critical bias voltage is proportional to g20 and depends on
the electron distributions of the coupled states by leads. Indeed,
this is also confirmed for a finite but small hopping t0 in Fig. 4,
where the critical bias voltages can be captured by a series of
linear fittings. The different slope manifests the distinct nature of
the corresponding insulating steady states.
Initially, the two-electron state in equilibrium mainly has the

pattern●○○● but is also perturbed by the CDW order due to the
finite t0, which will be coupled to the one-electron states made of
components ●○○○/○○○● and ○●○○/○○●○ by leads (the
coupling to three-electron states are highly suppressed by the
energy gap; cf. Fig. 3a). Since the one-electron state dominated by
pattern ○●○○/○○●○ has lower energy, the above two-
electron state is mainly coupled to this state for small bias
voltage, determining the charge gap. The slight g0-dependence of
energies of these states gives a small slope for the critical bias
voltage. As we increase the electron-phonon coupling, the Peierls
instability from pattern ●○○● into the CDW order suddenly
enhances the reduction of energy for two-electron state (cf.
Fig. 2b), which is still mainly coupled to the one-electron state
dominated by pattern ○●○○/○○●○, leading to the quick
increase in critical bias voltage and a large slope. This feature
provides an immediate smoking gun for the Peierls transition.

As the coupling further increases, the energy of three-electron
state would be lower than that of the one-electron state. The two-
electron state now mainly couples to the three-electron state
dominated by pattern ●○●●/●●○● (the weight of pattern
○●●●/●●●○ will increase for larger g0 due to the reduced
energy), and the charge gap as well as the critical bias voltage
start to decrease, although the insulating steady state still exhibit
CDW order (Fig. 3d). The further reduced charge gap may even
lead to a small increase in the current for a fixed large bias voltage;
cf. Fig. 3c.
Finally, we consider the phonon number Np ¼ Tr½ρssbyb� in the

steady state using Pauli master equation; see Fig. 3f and
discussions in “Methods”. An abrupt increase of Np is observed
when the electron-phonon coupling becomes too strong to
support the CDW structure, with little dependence on the applied
bias voltage. Interestingly, for relatively large bias voltage, the
phonon number also takes a large value for small electron-phonon
coupling. This counter intuitive phenomenon (cf. Fig. 5a for
phonon number in equilibrium) indeed is very different from the
large phonon number at strong electron-phonon coupling.
Actually the phonon number Np has two contributions, one
coming from the polaronic displacement of the oscillator
Δx ¼ Tr½ρssb� þ Tr½ρssby�, thus Np ≈ (Δx/2)2, and another from the
distribution of phonons. The last part is related to the variance of
phonon operator VarðbÞ ¼ Tr½ρssbyb� � Tr½ρssby�Tr½ρssb� (see the
insert of Fig. 3f), and measures the number of excited phonons in
the system. The results indicate that for small coupling the system
heats up. This is due to the current passing through the device, as
one sees that in coincidence with the degeneracy point
(g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ω0U1
p � 0:77) the variance has also a maximum and that

the variance increases with the voltage in these regions. For
strong electron-phonon coupling, the variance of phonon
operator is quite small. This suggests that the large phonon
number in this regime is only due to the polaronic displacement
of the oscillator that is proportional to the electro-mechanical
coupling constant g0. The system is actually in its ground state,
since the current is blocked and cannot transfer heat to the
oscillator.
We can also understand the large phonon number at small

coupling from the perspective of the Pauli master equation. In the
limit of g0→ 0, the electronic and phononic degrees of freedom
are indeed decoupled, which means that the lead-induced
outgoing and incoming tunneling rates for an eigenstate of HS

in Eq. (10) are uniform with respect to the phonon number in this

Fig. 4 Critical bias voltage Vbias,c for different electron-phonon
coupling strength. Below the critical bias voltage, the electric
current is smaller than 10−3 GHz, a very small value (we show two
examples of the current-voltage curves in the insert). The black
dashed lines are linear fittings of critical bias voltage as a function of
g20=_ω0U1 for different electron-phonon coupling regions. Other
parameters are the same as in Fig. 3.
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limit. At small g0, the weak electron-phonon coupling only has
limited influence on the eigenstates, hence the tunneling rates are
still very close and do not have significant difference in the whole
range of phonon numbers. This allows for the occupation of
excited states with large phonon number at small electron-
phonon coupling. Obviously, a larger bias voltage would allow
more eigenstates to be coupled, leading to a larger phonon
number.

DISCUSSION
In summary, we have investigated the steady state of a quantum
simulation platform for correlated electron-phonon physics, where
four spin-polarized quantum dots are equally placed along a
suspended carbon nanotube and are coupled to a fermionic
environment provided by two leads at the left and right end.
Different regimes in the steady state as well as in equilibrium as a
function of electron-phonon coupling strength have been
explored. Particularly, for intermediate electron-phonon coupling,
the Peierls instability drives the system into an insulating regime
with CDW order as a consequence of the competition between
electronic Coulomb repulsive interactions and phonon-induced
attractive interactions. The different behavior of critical bias
voltage for nonvanishing current further provides an immediate
smoking gun for the different nature of insulating steady state,
identifying the Peierls transition. To treat the electron-phonon
open systems with large phonon numbers, we also developed a
generalized shift method in the “Methods” section, which highly
reduces the phononic degrees of freedom required to describe
the problem.
Our work shall largely stimulate the experimental advances in

this field. Particularly, the proposed setup can be accessed via
current techniques in nanofabrication. The high tunability of
different parameters allows us to directly observe and detect the
predicted phonon-induced correlated physics and transport
behavior. Although our work focuses on the spin-polarized
quantum dots, it would be interesting to further take into account
the spin and/or valley degrees of freedom for the open electron-
phonon systems in the future studies, which shall bring in new
kind of orders and non-equilibrium behavior.

METHODS
Shift method for equilibrium systems at finite hopping
In Eq. (11), we have utilized the Lang-Firsov transformation to
transform the equilibrium electron-phonon Hamiltonian in the
atomic limit into a purely electronic problem. However, the
electrons and phonons cannot be decoupled at finite hopping,

since the hopping coefficient transforms as t0 !
t0e�ðgi;1�giþ1;1Þðb

y�bÞ=_ω0 and will gain a phonon-dependent phase.
One common approach is to truncate the infinite-dimensional
phononic Hilbert space to a finite-dimensional Hilbert space and
then perform the numerical diagonalization. However, this
method is limited to small phonon numbers. To overcome this
problem, a shift method has been developed in ref. 35.
The basic idea of this method is to shift the phononic vacuum

to a state with finite number of phonons by the transformation
b! ~bþ S and only take into account a small number of effective
phononic states that are coupled to the electrons (e.g., we
consider a Hilbert space with maximal 30 tilded phonons).
The shift parameter S will be updated iteratively according to

the replacement S �½hð~by þ S�Þð~bþ SÞi�
1=2

until convergence,
where the expectation 〈⋅〉 is performed on the ground state of the
shifted Hamiltonian HS½di ; ~b; S�. In the practical calculation, we can

utilize the phonon number Np ¼
P

igi;1ni=_ω0
� �2

in the atomic
limit to obtain a good initial guess S0 ¼ �

ffiffiffiffiffiffi
Np

p
for the shift

parameter.
As an application of this method and a complement to Fig. 2b,

we show the two-electron equilibrium states at finite hopping in
Fig. 5, with a particular interest in the fate of CDW order at large
values of hopping coefficient. First, unlike the phonon number in
steady state (cf. Fig. 3f), the equilibrium phonon number Np ¼
hð~by þ S�Þð~bþ SÞi always increases as the electron-phonon
coupling increases; see Fig. 5a. There is also a clear discontinuity
for small t0 at the transition point from CDW order to the ○●●○
pattern due to the first order nature of this transition, which is
smoothed by large hopping coefficient. For the electronic
properties, the three equilibrium regimes discovered in the atomic
limit survive under small but finite t0 and distinguish from each
other clearly, as indicated in the order parameter O (Fig. 5b) and
CDW structure factor C (Fig. 5c), although the corresponding
values are reduced. On the other hand, at large hopping
coefficient, the boundary between the pattern ●○○● and
CDW configuration is strongly blurred. This is attributed to the
fact that the energy gap between these two states is small and
changes slowly as we increase the electron-phonon coupling
strength; cf. Fig. 2b. Therefore, these two states will strongly affect
each other for a wide range of g0, blurring the distinctions.

Generalized shift methods for steady states
Now we generalize the shift method to open electron-phonon
systems. We note that the steady state ρss can be considered as
the ground state of an effective Hamiltonian LyL. As in the shift
method for equilibrium ground states, we first make the

Fig. 5 Equilibrium two-electron states at finite hopping t0. a The phonon number Np increases as the electron-phonon coupling becomes
stronger and is more smooth for a larger t0. b, c The order parameter O and CDW structure factor C get reduced, but the three equilibrium
regimes discovered in the atomic limit still survive under small but finite t0. Here we set U1/2πℏ= 200 GHz, U2/2πℏ= 20 GHz, U3/2πℏ= 2 GHz,
and ω0/2π= 3 GHz. The local chemical potential ε is ignored for the two-electron case, and the bias voltage is set to zero for these plots.
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transformation b! ~bþ S to shift the phononic vacuum to a state
with phonon number ∣S∣2. Then we diagonalize the Hamiltonian
HS½di; ~b; S� and construct the jump operators Lℓα[S] via the
eigenstates. Finally, we solve the steady state ρss[S] of the
Lindblad master equation (7) in terms of HS½di; ~b; S� and Lℓα[S]
and update the shift parameter as

S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trfρss½S�ð~b

y þ S�Þð~bþ SÞg
q

: (15)

The above procedures are repeated until convergence of the shift
parameter. It is also a good initial guess for the shift parameter to
use the phonon number from Pauli master equation.
We would like to mention that the dimensionality of the shifted

phononic Hilbert space in general depends on the chemical
potential and temperature in the leads and the phonon frequency,
which determine how many phonons will be coupled by the
environment. For a large bias voltage and temperature compared
with the phonon frequency, the number of tilded phonons may be
still large. In this case, although the effective phononic degrees of
freedom have been highly reduced compared to the bare phonons,
it is still not easy to solve the steady state. Therefore, the above
method is limited to relatively small bias voltage and temperature.
On the other hand, we note that the fermionic environment

directly couples to the electronic degrees of freedom in the
system. To solve the steady state for a large tilded phononic
Hilbert space, we further make an approximation for the shift
method, i.e., we solve the phonon number from the Pauli master
equation and use it as a shift parameter for the shift method to
develop the possible coherence between electronic degrees of
freedom using the time evolution or iterative method until the
electronic properties converge, which is much faster than the

convergence of phonon number Np ¼ Trfρss½S�ð~b
y þ S�Þð~bþ SÞg.

In this method, the shift parameter will not be updated, and the
phonon number from Pauli master equation is assumed to be
close to the real one. For the regime with small electron-phonon
coupling strength or ignorable coherence, this approximation
should work well, since the corresponding coherence between
phononic degrees of freedom is weak. We note that even for the
regime beyond this limitation, the electronic properties obtained
from this method are still more reasonable than the results
obtained from the Pauli master equation, as part of the coherence
has been captured.
In Fig. 6, we benchmark our generalized shift methods by

observing the steady-state phonon number Np, electron
number Ne, and current I. Here we choose a very large
fundamental frequency ω0 such that the phonon number in
the system is small and it is still possible to solve the steady
state directly (i.e., without using the shift methods). Compared
with the direct method by solving the equation L½ρss� ¼ 0, the
results obtained from Pauli master equation matches qualita-
tively. However, the difference may be large near
g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ω0U1
p � 0:77, which corresponds to the equilibrium

transition point from two-electron states to the four-electron
states (cf. Fig. 3a). Here the energy levels are close to each other,
and the coherence cannot be ignored. Due to the lack of
coherence, the current from Pauli master equation is in general
larger than the true value even if the phonon number and
electron number are nearly the same. We note that the phonon
number from Pauli master equation only differs from the real
one significantly in the region where the electron-phonon
coupling is strong and the coherence is relevant.
On the other hand, the results from shift method match

quantitatively with the exact results, and the effective dimension
of phononic Hilbert space has been highly reduced compared with
the direct method (e.g., from 30 to 5 in our calculation). Hence the
shift method works quite well. We also plot the electron number
and current obtained from shift method without updating the shift
parameter, where the shift parameter is provided by the phonon
number from Pauli master equation and we evolve the shifted
Lindblad master equation until the electronic properties converge.
The matching with the full shift method as well as the exact results
suggests that this method is also a good approximation.
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