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Supplementary Information  

Optomechanical measurement of thermal transport in two-

dimensional MoSe2 lattices 

 

Section 1 ─ Characterization of MoSe2 Monolayers  

We select MoSe2 monolayers using optical microscopy measurements for the fabrication of devices. We use low-

temperature photoluminescence measurements to confirm that fabricated devices consist of monolayer flakes 

(Fig. S1). The spectrum shows the exciton and the trion peaks.    

 

Figure S1: Photoluminescence spectrum of the MoSe2 monolayer used to fabricate the 2.5 m radius drum discussed in the 

main text.  The spectrum is recorded using a HeNe laser with 20 W power. The background of the spectrum is substracted.  

 

Section 2 ─ Absorption of suspended MoSe2 monolayers  

The intensity of the laser oscillates as a function of the coordinate in the direction perpendicular to the substrate 

surface because of the interference between the incident and the reflected beam. Figure S2 shows the calculated 

intensity profile 𝐼(𝑧) normalized to the intensity 𝐼0 of the incident beam for our device layout. The oscillation of 

𝐼/𝐼0 is limited between 0.4 and 1.3 because of the absorption of the Si substrate. The intensity of the beam is 0.5 ∙

𝐼0 at the level of the monolayer. The intensity profile in Fig. S2 is obtained using the Lumerical FDTD full wave 

simulation. We use 5.7 % for the absorption coefficient from the measurements in Ref. [1]. Overall, we have that 

the absorbed laser power is 𝑃 = 0.5 ∙ 0.057 ∙ 𝑃0 where 𝑃0 is the measured power of the incident laser.   

We verify that the absorption of MoSe2 monolayers at 633 nm remains constant when varying the temperature 

from 3 to 300 K and when sweeping the gate voltage from – 4 V to +4 V. We carry out the measurements on MoSe2 

monolayers transferred on Si chips. We study the absorption by comparing the measured reflection power when 

the laser beam is focused on the MoSe2 monolayer and when it is focused nearby the monolayer.   
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Figure S2: Simulated intensity profile of the normalised laser intensity in the direction perpendicular to the substrate. The 

black dashed line at 𝑧 = 0 𝑛𝑚 corresponds to the position of the monolayer. The wavelength of the laser beam is 633 nm. 

The oxide thickness is 125 nm and the air gap is 160 nm; these values are obtained from ellipsometry and atomic force 

microscopy measurements. 

 

Section 3 ─ Membrane under tension 

We carry out optomechanical experiments on stretched membranes. We estimate the strain from the measured 

dependence of the resonant frequency on the gate voltage shown in Fig. S3 using the following expression 

 𝑓m(𝑉g
dc) =

1

2𝜋
√

4.29𝐸2D

𝑚eff
𝜖 −

0.271

𝑚eff

𝜖0𝜋𝑅0
2

𝑑3 (𝑉g
dc − Δϕ)

2
. (S1) 

   

Here 𝐸2D corresponds to the two dimensional young modulus of MoSe2, 𝑅0=2.5 m is the radius of the resonator, 

d=200 nm is the effective distance between the gate and the membrane (taking into account the dielectric 

constant of the substrate), and Δϕ is the work function difference between the gate electrode and the resonator. 

We obtain the effective mass 𝑚eff from the curvature of the parabola. We then estimate the strain 𝜖 from the 

resonant frequency at 𝑉g
dc = Δϕ [2]. In all our MoSe2 drums we obtain a positive strain in the range 0.1 − 1%. The 

fact that our drums are under tension is confirmed by the strong temperature dependence of the resonant 

frequency shown in Fig. 2c of the main text. The latter behavior is attributed to the thermal contraction of the 

MoSe2 crystal when lowering temperature [2]. The positive strain at room temperature arises from the built-in 

stress created during fabrication [2]. 

These measurements show that the membrane is flat when Δ𝑉g
dc = (𝑉g

dc − Δϕ)≃0, while it becomes bent at 

finite Δ𝑉g
dc due to the electrostatic force. We estimate that the central position of our drums is deflected by  ≲

10 nm when Δ𝑉g
dc = 4𝑉. Figure S3 shows that Δϕ ≃ 0.2 V for the 2.5 m radius drum discussed in the main text. 
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Figure S3. Mechanical resonance frequency as a function of static gate voltage. 

 

 

Section 4 ─ measurements of the equivalent thermal conductance and the equivalent heat capacity 

Raman measurements of the equivalent thermal conductance published in previous works 

The thermal conductivity of graphene and other 2D materials has been intensively studied with Raman 

measurements [1,3-9]. The device consists typically of a suspended monolayer disc clamped at its edge. A gradient 

of temperature Δ𝑇 is produced between the center of the membrane and its circular edge using a focused laser 

beam. The heat flow is given by the laser power  Δ𝑃 absorbed in the membrane (Fig. S4a). It is assumed that the 

absorbed energy is transferred to the phonons of the membrane. The temperature at the center of the membrane 

is probed by measuring the shift of the Raman-peak frequency when sweeping the laser power, which gives 

𝛿𝑓𝑅/𝛿𝑃. The temperature variation is calibrated by measuring the Raman-peak frequency as a function of the 

temperature of the setup, that is, 𝛿𝑓𝑅/𝛿𝑇. The thermal conductance 𝐾 is: 

 𝐾 =
Δ𝑃

Δ𝑇
=

𝛿𝑓R/𝛿𝑇

𝛿𝑓R/𝛿𝑃
 . (S2) 

This Raman method to study thermal conductance of two dimensional materials has been used with great success 

at room temperature by many groups [1,3-9]. However, this method is not suitable at cryogenic temperatures, 

since the frequency shift of the Raman peak is typically resolved with laser powers of the order of 100 𝜇W or 

above, which leads to significant absorption heating. We show in this work that this problem is overcome using 

the resonant peak of the fundamental acoustic mode of the membrane. The quality factor of this mode increases 

by nearly three orders of magnitude when lowering temperature from 300 K to 3.5 K [2], so that the peak is 

resolved with low laser powers and without absorption heating. 
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Figure S4: (a) Monolayer membrane coupled to a focused laser beam.  The laser acts as a local heat source.  The heat travels 

through the monolayer crystal from the center of the crystal to its circular clamping edge. Because of the thermal resistance, 

the heat flow 𝛥𝑃 leads to a temperature gradient 𝛥𝑇. The yellow region corresponds to higher temperature, while red black 

regions correspond to lower temperature. (b) Schematic of the power flow. The power 𝑃𝑖𝑛 flowing into the monolayer crystal 

is equal to the power 𝑃𝑜𝑢𝑡  flowing out the crystal. 

 

 

Optomechanics measurement of the equivalent thermal conductance 

Our method is based on the measurement of the fundamental vibrational mode of the suspended membrane, 

namely the lowest energy flexural mode, instead of the Raman mode.  We measure the shift of the resonant 

frequency when the absorbed laser power 𝑃 is increased in order to get 
𝛿𝑓m

𝛿𝑃
. We assume that the absorbed energy 

is entirely transferred into the phonon modes of the crystal as in the Raman method. As a calibration, we measure 

the resonant frequency as a function of the temperature of the cryostat, that is, 
𝛿𝑓m

𝛿𝑇
. We obtain the equivalent 

thermal conductance 

 𝐾 =
Δ𝑃

Δ𝑇
=

𝛿𝑓m/𝛿𝑇

𝛿𝑓m/𝛿𝑃
. (S3) 

 

The resonant frequency depends on the temperature because of the thermal expansion of the MoSe2 crystal [2]. 

Here, 𝛥𝑇  is an effective temperature that depends on the temperature profile over the entire suspended 

monolayer, as we will see in Section 5. 

 

 

Optomechanics measurement of the heat transport time  

There is a static and a dynamical backaction of the laser beam on the dynamics of the resonator. The static 

backaction is a simple absorption heating effect that increases the temperature of the resonator as discussed 

above. It shifts the resonant frequency by Δ𝑓T and the damping rate by Δ𝛤T. The dynamical backaction is related 
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to the retardation of the photothermal force [10]. Here, the absorption heating expands the MoSe2 crystal, which 

is equivalent to a force. The displacement dependence of the absorbed power laser is not constant because of the 

interference pattern of the laser intensity in the direction perpendicular to the substrate (Fig. S2). In the course of 

one period of the displacement oscillation, the absorbed laser power oscillates as well. Because the membrane 

takes a finite time to heat up or to cool down, the photothermal force oscillates with a finite phase shift compared 

to the displacement oscillation. The in-phase photothermal force modifies the resonant frequency by Δ𝑓B and the 

out-of-phase photothermal force modifies the damping rate by Δ𝛤B, 

 Δ(𝑓B
2) = −𝑓m

2
𝑑𝐹

𝑑𝑧

1

𝑘

1

1 + (2𝜋𝑓m)2𝜏2 
, (S4) 

 

 Δ𝛤B = Γm𝑄
𝑑𝐹

𝑑𝑧

1

𝑘

2𝜋𝑓m𝜏

1 + (2𝜋𝑓m)2𝜏2 
, (S5) 

 

 𝜏 = −
ΔΓB

4𝜋𝑓mΔ𝑓B
, (S6) 

with 
𝑑𝐹

𝑑𝑧
∝ 𝑃 and 𝑄 =

𝑓m

Γm
. The retardation time given by 𝜏 corresponds to the time that takes the heat to travel 

from the center of the membrane to its circular edge.  

Dynamical backaction in our device layout can be controlled with the voltage applied to the backgate of the wafer. 

The backaction force vanishes to zero for zero gate voltage when the membrane is flat, because the photothermal 

force is perpendicular to the displacement (Fig. S5).  

Since the static and the dynamical backactions vanish to zero at zero laser power, we linearize the measured 

frequency  𝑓m and damping rate 𝛤m as functions of absorbed laser power 𝑃 (Fig. S6).  

 
𝑓m(𝑃) = 𝑓m(𝑃 = 0) + 𝑎𝑃, 

 
(S7) 

 𝛤m(𝑃) = 𝛤m(𝑃 = 0) + 𝑏𝑃. (S8) 
 

At Δ𝑉g ≃ 0V there is static backaction, but no dynamical backaction (Figure S5), 

 Δ𝑓T(𝑃) = 𝑎0𝑉𝑃, (S9) 
   
 Δ𝛤T(𝑃) = 𝑏0𝑉𝑃. (S10) 

 

At Δ𝑉g = 4V there are both static and dynamical backactions (Figure S5), 

 
Δ𝑓T(𝑃) + Δ𝑓B(𝑃) = 𝑎4𝑉𝑃, 

 
(S11) 

 Δ𝛤T(𝑃) + Δ𝛤B(𝑃) = 𝑏4𝑉𝑃. (S12) 
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Figure S5: Cross section of the suspended monolayer membrane coupled to the laser beam. (a) At 𝛥𝑉𝑔
𝑑𝑐 ≃ 0 the membrane 

is flat, while a finite gate voltage deflects the membrane. (b) When the membrane is flat, the dynamical backaction is 

suppressed to zero. Indeed, the thermal expansion of the crystal results in a force that cannot drive flexural vibrations. The 

force is perpendicular to the displacement. When the membrane is bent with a finite gate voltage, the dynamical backaction 

becomes finite, because the photothermal force can drive the resonator.   

 

 

 

 

Figure S6: Measured variations of the resonant frequency (a) and damping (b) as functions of laser power for two different 

gate voltages. The dynamical backaction force is finite at 𝛥𝑉𝑔
𝑑𝑐 = 4 𝑉, while is suppressed to zero at 𝛥𝑉𝑔

𝑑𝑐 ≃ 0 𝑉, see Fig. S5.  
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The static dynamical backaction is expected to weakly change when varying the gate voltage by a few volts, 

because the static displacement remains small. As a result,  

 Δ𝑓B(𝑃) = 𝑎0𝑉𝑃 − 𝑎4𝑉𝑃, (S13) 
 
 
 

Δ𝛤B(𝑃) = 𝑏0𝑉𝑃 − 𝑏4𝑉𝑃, (S14) 

 𝜏 = −
𝑏0𝑉 − 𝑏4𝑉

4𝜋𝑓0(𝑎0𝑉 − 𝑎4𝑉)
. (S15) 

 

 

 

Measurement of the equivalent heat capacity 

The thermal transport in our experiment can be seen as the unidirectional flow of energy from the laser beam into 

the monolayer membrane in a first step, and from the membrane to the environment in a second step (Fig. S4b). 

We assume that all energy absorbed into the membrane flows to the environment via the phononic states of the 

crystal – this is the assumption made in the Raman measurements of thermal transport [1,3-9]. Because of the 

conservation of the heat flow, the power 𝑃in flowing into the monolayer crystal is equal to the power 𝑃out flowing 

out of the crystal. Here, 𝑃in is the absorbed power 𝑃 of the laser, and 𝑃out is related to the heat-induced energy 

shift Δ𝐸monolayer (stored in the monolayer crystal) multiplied by the energy escape rate 1/𝜏. This rate is given by 

the inverse of the measured characteristic time 𝜏 for the crystal to heat or to cool down. We have 

 𝑃in = 𝑃, (S16) 

 

 𝑃out =
Δ𝐸monolayer

𝜏
. (S17) 

 

 Setting 𝑃in = 𝑃out, we define the equivalent heat capacity  

 𝐶 =
Δ𝐸monolayer

Δ𝑇
= 𝜏 · 𝐾 (S18) 

 

with 𝐾 = 𝑃 Δ𝑇⁄   being the thermal conductance (Eq. S3). As noted above, 𝛥𝑇  is an effective temperature that 

depends on the temperature profile over the suspended monolayer. As a result, the equivalent heat capacity 𝐶 

differs by a constant 𝛽 from the usual heat capacity of the membrane evaluated with a temperature that is uniform 

over the entire material. In Section 5, we show that 𝛽  is about one in the ballistic regime and for our drum 

geometry.  
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Section 5 ─ Estimating the thermal conductivity and the specific heat capacity, predictions based on first-

principles  

 

Reminder – Relation between the conductance and the conductivity in previous Raman measurements 

The thermal conductivity 𝜅 is inferred from 𝐾 using the heat diffusion equation, as introduced in Ref. [4].  The laser 

is assumed to be a Gaussian beam with radius 𝑟0. We have 

 𝜅 = 𝐾
𝜂

2𝜋𝑡
 (S19) 

   
where 𝑡 is the thickness of the MoSe2 monolayer and 𝜂 is a constant of the order of unity, which depends on the 

temperature profile along the radial coordinate 𝑟. The spatial temperature rise induced by the absorbed laser 

power variation Δ𝑃 is given by   

 Δ𝑇(𝑟) =
Δ𝑃

2𝜋𝜅𝑡
ln (

𝑅0

𝑟
) 𝛾(𝑟) (S20) 

with  

 𝛾(𝑟) = 1 +

Ei (−
𝑟2

𝑟0
2) − Ei (−

𝑅0
2

𝑟0
2 )

2ln (
𝑅0
𝑟 )

 . (S21) 

 

Here 𝑡 is the thickness of the membrane and Ei is the exponential integral function. The edge of the drumhead is 

assumed to be well thermalized to the environment, so that  𝑇(𝑅 = 𝑅0) = 𝑇0  (Figure S4a). The temperature 

decreases logarithmically along 𝑟 between 𝑟0 and 𝑅0. 

 

 

Diffusive thermal transport – measured conductance and conductivity  

We obtain the equivalent thermal conductance 𝐾 = Δ𝑃 ΔT⁄   by measuring the resonance frequency of the 

vibrational mode of the membrane as a function of the absorbed laser power and the cryostat temperature, as 

described in Section 4. The resonant frequency depends on the temperature because of the thermal expansion of 

the MoSe2 crystal [2]. Here, Δ𝑇 is an effective temperature that depends on the temperature profile over the entire 

suspended monolayer, as we will see next. For small temperature changes of the cryostat, we can assume the 

thermal expansion coefficient 𝛼𝑇 to be constant. The thermal expansion of the silicon substrate is comparatively 

negligible [2] and will be ignored below.  In this case, it is straightforward to show (see for instance Ref. [11]) that 

for a circular membrane under initial uniform stress 𝜎0 at a uniform temperature 𝑇0 the new tensile stress in the 

membrane for a radial non-uniform profile 𝑇(𝑟) = 𝑇0 + Δ𝑇(𝑟) is given by 

 
𝜎rr(𝑟) = 𝜎0 −

𝛼𝐸2D

𝑟2
∫ 𝑑𝑟′𝑟′Δ𝑇(𝑟′) −

𝛼𝐸2D

𝑅0
2

1 − 𝜈

1 + 𝜈

𝑟

0

∫ 𝑑𝑟′𝑟′Δ𝑇(𝑟′)
𝑅0

0

, 

 

(S22) 
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 𝜎θθ(𝑟) = 𝜎0 +
𝛼𝐸2D

𝑟2
∫ 𝑑𝑟′𝑟′Δ𝑇(𝑟′) −

𝛼𝐸2D

𝑅0
2

1 − 𝜈

1 + 𝜈

𝑟

0

∫ 𝑑𝑟′𝑟′Δ𝑇(𝑟′)
𝑅0

0

, (S23) 

 

where 𝜎𝑖𝑗 are the 2D stresses in polar coordinates (𝑟, 𝜃) and 𝜈 the Poisson’s ratio of the material.  Solving the 

wave equation and treating the nonuniform stress from the heating to lowest order in perturbation theory, one 

finds the frequency shift of the fundamental mode to be 

 𝛿𝑓m

𝑓m
= −

𝛼𝑇

2𝜖
([1 + 𝜈] ∫ 𝑑𝑥 𝑥Δ𝑇(𝑥) +

2(1 − 𝜈)

|𝐽1(𝜉01)|2
∫ 𝑑𝑥 ∫

𝑑𝑥′𝑥′

𝑥

𝑥

0

1

0

1

0

𝐽1(𝜉01𝑥)2Δ𝑇(𝑥′)). 

 

(S24) 

Here, 𝐽1 is the Bessel function of the first kind and 𝜉01 ≈ 2.40 the first zero of 𝐽0. The radial temperature profile 

Δ𝑇 has further been scaled to lie on the unit disc, and 𝜖 is the strain in the membrane at constant temperature 𝑇0. 

We assume that the membrane at its clamping edge is thermalized to the environment, a good assumption for 

large diameter transition metal dichalcogenide monolayer membranes as demonstrated by Yan and coworkers [5].  

In the diffusive regime, the spatial temperature rise induced by the absorbed laser power variation δ𝑃 is given by   

 
δ𝑇(𝑥) =

𝛿𝑃

2𝜋𝜅𝑡
[ln (

1

𝑥
) +

Ei(−𝛾0
2𝑥2)−Ei(−𝛾0

2)

2
], 

 
(S25) 

with 𝛾0 = 𝑅0/𝑟0 [4,5]. In this work, the drum radius 𝑅0 is either 1.5 or 2.5 m, and 𝑟0 is 0.35 m. This allows us to 

quantify the thermal conductivity via the measured frequency shift of the membrane when illuminated by the 

laser. Upon combining Eqs. (S24) and (S25) we have 

 𝛿𝑓m

𝛿𝑃
= −

𝛼𝑇

2𝜖

𝑓m

2𝜋𝜅𝑡
𝜂.  

 

(S26) 

We obtain the numerical factor 𝜂 ≅ 0.64 + 0.02(r0/𝑅0) − 1.08(r0/𝑅0)2 + 0.64(r0/𝑅0)3 from numerical inte-

gration of the expressions (S24) and (S25) using 𝜈 = 0.2. We have 𝜂 = 0.62 for the 2.5 m drum and 𝜂 = 0.6 for 

the 1.5 m drum. The Poisson’s ratio is given by 𝜈 = 1 − 2(vt/vl)
2 for a two-dimensional membrane. First prin-

ciples computation results in  vt = 2774 m/s and vl = 4391 m/s for the transverse and the longitudinal sound 
velocity of MoSe2 monolayers, respectively.  
 
From the calibration measurement of the frequency shift as a function of cryostat temperature (uniform 

temperature and membrane expansion) we further have  

 𝛿𝑓m

𝛿𝑇
= −

𝛼𝑇𝑓m

2𝜖
 

(S27) 

Thus, the in-plane thermal conductivity of the MoSe2 is found from the expression 

 
𝜅 =

𝜂

2𝜋𝑡

(𝛿𝑓m/𝛿𝑇)

(𝛿𝑓m/𝛿𝑃)
= 𝐾

𝜂

2𝜋𝑡
. 

(S28) 

Optomechanical measurements and Raman measurements result in a similar relation between 𝜅  and 𝐾  in the 

diffusive regime (Eqs. S19 and S28) but with different 𝜂 values. Here, 𝑡=0.65 nm is the thickness of the MoSe2 

monolayer. 
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Diffusive and ballistic conductivity computed from first-principles Boltzmann transport equation  

Here we discuss the numerical evidence pointing to ballistic conduction in MoSe2. First, we compute the diffusive 
thermal conductivity 𝜅diff of an infinitely large MoSe2 by solving a first-principles Boltzmann transport equation 
with a variational approach [12,13], where we take into account thermal resistance due to three-phonon interac-
tions [14] and isotopic scattering [15] (at natural isotope abundances).  
 
Next, we compute the ballistic conductivity 𝜅ball of a finite sample of MoSe2, where phonon scattering events are 
neglected, but the phonon mean free path is limited by the system size. To simplify the comparison, we study an 
infinitely wide system with transport along a finite length equal to 𝐿. As the anisotropy of the material is small, the 
transport direction is taken to be aligned with the crystal zig-zag direction. It can be shown [16] that thermal con-
ductivity in such system is  

 
𝜅ball =

1

𝑁𝒒𝑉cell
∑ 𝐶𝒒,𝑠 |𝑣𝒒,𝑠

//
|

2 𝐿

2𝒒,𝑠
 

(S29) 

 

where |𝑣𝒒,𝑠
//

| is the projection of the phonon group velocity along the thermal gradient; and the effective length of 

thermal transport is 
𝐿

2
.  

 
Finally, we compare 𝜅ball to the conductivity 𝜅finite of a finite trench of MoSe2 that takes into account both intrin-
sic phonon interactions and finite-size effects. In this case, we solve the Boltzmann transport equation with a var-

iational approach, considering an effective scattering term equal to 
2|𝑣𝒒,𝑠

//
|

𝐿
 in addition to intrinsic interactions.  

 
 

 

Figure S7: Computational comparison of the thermal conductivity of a finite-length MoSe2 trench, the conductivity of an 

infinite MoSe2 monolayer, and the conductivity in the ballistic limit of a finite-length MoSe2 system. The conductivity of both 

the trench and the infinite monolayer includes intrinsic phonon scattering events. 
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In Fig. S7, we compare these three model conductivities for 𝐿 =2.5 μm, i.e. a length comparable to the experi-
mental sizes under examination. We observe that 𝜅finite below 100K is well approximated by the ballistic conduc-
tivity, which neglects any intrinsic phonon scattering event. Moreover, 𝜅ball is consistent with the measured tem-
perature dependence of the conductivity. This rules out diffusive conduction. This result suggests that for the sizes 
considered in the experiment, intrinsic phonon interactions can be neglected and thermal transport can be de-
scribed as a purely ballistic process at low temperatures. 
 
We note that 𝜅finite is a rather simplistic interpolation between the ballistic and the diffusive limit, which fails to 
account for viscous effects arising from phonon interactions [17]. A more detailed discussion of such viscous ef-
fects would provide a more accurate representation of the crossover region between the ballistic and diffusive 
limit, particularly in the region around the thermal conductivity peak. To this aim, heat flux should be modeled by 
solving a set of coupled linear differential equations to obtain its radial and angular dependence. This task how-
ever, falls outside the purpose of this work and will be left for further studies. Nevertheless, we expect the quali-
tative features of 𝜅finite to be well described by the present modeling. 
 

 

Ballistic thermal transport, thermal conductance, specific heat – relation between measurements and theory  

We first note that the quantity 𝛿𝑓m/𝛿𝑇 in Eq. S3 measured by changing the cryostat temperature corresponds to 

the case where the temperature remains constant over the membrane surface. However, the laser induces a 

spatially varying temperature profile over the membrane surface, whose precise shape depends on the 

conductance model, as will be discussed below. Since temperature is not uniform, the change of the resonance 

frequency (
𝛿𝑓m

𝛿𝑇
)

laser
 due to the laser heating differs from the change (

𝛿𝑓m

𝛿𝑇
)

cryo
 due to the cryostat temperature 

variation as 

 (
𝛿𝑓m

𝛿𝑇
)

laser
=

1

𝛼
(

𝛿𝑓m

𝛿𝑇
)

cryo
, (S30)  

 

where 
1

𝛼
 is a scaling factor.  We introduce 𝐾model as 

 𝐾model =

(
𝛿𝑓m
𝛿𝑇

)
laser

𝛿𝑓m
𝛿𝑃

=

1
𝛼 (

𝛿𝑓m
𝛿𝑇

)
cryo

𝛿𝑓m
𝛿𝑃

=
1

𝛼
𝐾 (S31) 

 

which depends on the model used to predict the laser-induced profile of temperature. To compute the 𝛼 factor 

for a given temperature profile δ𝑇laser(𝑟), we define an effective temperature 𝑇uniform such that the frequency 

shift of the membrane for a constant temperature change δ𝑇uniform = (𝑇uniform − 𝑇0)  is the same as the 

frequency shift of a membrane for a non-uniform temperature change δ𝑇laser(𝑟).  
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Next, we approximate the laser spot at the membrane center as an 

ideal heat reservoir with temperature 𝑇center . We assume that 

transport takes place in absence of scattering events between the 

inner reservoir defined by the laser spot radius 𝑟0  and the outer 

reservoir given by the drum radius 𝑅0.  

 

As a first step, we need a temperature profile to calculate 𝛼. Rigorously 

speaking, temperature cannot be defined in the ballistic regime, as 

phonons are not populated according to a Bose—Einstein distribution. 

Nevertheless, we can define a local temperature proportional to the 

number of excited phonons. To define the radial profile of 

temperature, we first note that the radial component of phonon 

velocities is constant, ensuring that the total heat flux flowing through 

a ring of radiuses 𝑟 and 𝑟 + 𝑑𝑟, with 𝑟0 < 𝑟 < 𝑅0, must be conserved. 

Therefore, the current density, and thus the phonon density, must decrease as 
1

𝑟
 . As a result, the temperature 

profile of the membrane is: 

 𝑇laser(𝑟) = 𝑇0 + (𝑇center − 𝑇0) (S32) 

for  𝑟 < 𝑟0 ; and 

 𝑇laser(𝑟) = 𝑇0 +
𝑟0

𝑟
(𝑇center − 𝑇0) (S33) 

for  𝑟0 < 𝑟 < 𝑅0. 

 

Taking into account the non-uniform stress as we did above, we find that 
1

𝛼
 is well approximated by the relation: 

 

1

𝛼
= 2.45

𝑟0

𝑅0
− 1.9 (

𝑟0

𝑅0
)

2

+ 0.46 (
𝑟0

𝑅0
)

3

 

 

(S34) 

Using 𝑟0= 0.35 m we find 𝛼 = 2.1 and 𝛼 = 3.2 for the 1.5 m and 2.5 m radius drum, respectively. 

 

The conductance 𝐾model can be obtained as follows. The contribution of a phonon to the heat flux at a point (𝑟0, 𝜃) 

of the laser spot circumference (in polar coordinates) is: 

 

1

𝐴cell
 𝑟0 𝑑𝜃 �̅�𝒒,𝑠(𝑇center) ℏ𝜔𝒒,𝑠 (𝑣𝒒,𝑠

𝑥 cos 𝜃 + 𝑣𝒒,𝑠
𝑦

sin 𝜃) 

if  (𝑣𝒒,𝑠
𝑥 cos 𝜃 + 𝑣𝒒,𝑠

𝑦
sin 𝜃) > 0 , 

(S35) 

for the phonons propagating out of the laser spot and 
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1

𝐴cell
𝑟0 𝑑𝜃 �̅�𝒒,𝑠(𝑇0) ℏ𝜔𝒒,𝑠 (𝑣𝒒,𝑠

𝑥 cos 𝜃 + 𝑣𝒒,𝑠
𝑦

sin 𝜃) 

if  (𝑣𝒒,𝑠
𝑥 cos 𝜃 + 𝑣𝒒,𝑠

𝑦
sin 𝜃) < 0 , 

(S36) 

for the phonons entering into the laser spot region. Here 𝒒 is the phonon wavevector, 𝑠 is the phonon branch 

index, �̅�𝒒,𝑠 is the Bose—Einstein population, ℏ𝜔𝒒,𝑠 the phonon energy, 𝑣𝒒,𝑠
𝑥 cos 𝜃 + 𝑣𝒒,𝑠

𝑦
sin 𝜃 is the projection of 

the phonon velocity in direction 𝜃, 𝐴cell is the unit cell area. Taking advantage of the invariance of the phonon 

energy upon momentum reversal, namely ℏ𝜔𝒒,𝑠 = ℏ𝜔−𝒒,𝑠  and summing over phonon momenta and branches we 

obtain the heat flux current 𝐼:  

 

𝐼 =
2𝜋𝑟0

𝑁𝑞 𝐴cell
∑

(�̅�𝒒,𝑠(𝑇center)−�̅�𝒒,𝑠(𝑇0))

2
ℏ𝜔𝒒,𝑠   

1

2𝜋
∫ 𝑑𝜃

2𝜋

0
|𝑣𝒒,𝑠

𝑥 cos 𝜃 + 𝑣𝒒,𝑠
𝑦

sin 𝜃|𝒒,𝑠 = 

(𝑇center − 𝑇0)
2𝜋𝑟0

𝑁𝑞  𝐴cell
∑

𝐶𝒒,𝑠

2
 

1

2𝜋
∫ 𝑑𝜃

2𝜋

0

|𝑣𝒒,𝑠
𝑥 cos 𝜃 + 𝑣𝒒,𝑠

𝑦
sin 𝜃|

𝒒,𝑠

 , 

 

(S37) 

where 𝑁𝑞 is the number of 𝒒-points, 𝐶𝒒,𝑠 =
𝜕�̅�𝒒,𝑠

𝜕𝑇
ℏ𝜔𝒒,𝑠 the phonon mode specific heat in J/K, and the factor 1/2 is 

used to consider in the sum only phonons propagating in the correct direction. The integral over 𝜃  can be 

evaluated as: 

 

1

2𝜋
∫ 𝑑𝜃

2𝜋

0
|𝑣𝒒,𝑠

𝑥 cos 𝜃 + 𝑣𝒒,𝑠
𝑦

sin 𝜃| =
1

2𝜋
∫ 𝑑𝜃

2𝜋

0
||𝑣𝒒,𝑠| cos 𝑣𝒒,𝑠

𝜙
cos 𝜃 +

|𝑣𝒒,𝑠| sin 𝑣𝒒,𝑠
𝜙

sin 𝜃| =
|𝑣𝒒,𝑠|

2𝜋
∫ 𝑑𝜃

2𝜋

0
|cos(𝜃 − 𝑣𝒒,𝑠

𝜙
)| =

2|𝑣𝒒,𝑠| 

𝜋
 , 

(S38) 

 

where in the second equality we wrote the phonon velocity in polar coordinates. Dividing the current 𝐼  by 

(𝑇center − 𝑇0) we obtain the conductance 𝐾model : 

 𝐾model =
2𝜋𝑟0

𝑁𝑞  𝐴cell
∑

𝐶𝒒,𝑠

2
 
2|𝑣𝒒,𝑠|

𝜋
𝒒,𝑠

 . (S39) 

Finally, to compare with experiments, we take into account for the scaling factor 𝛼 , so that the experimental 

equivalent conductance is evaluated as: 

 𝐾 = 𝛼𝐾model = 𝐴cross𝑀, (S40) 

 Across = 2𝜋𝑟0𝑡𝛼, (S41) 

 𝑀 =
ρcv

2
 , (S42) 

 
𝑐 =

1

ρt

1

𝑁𝑞𝐴cell
∑ 𝐶𝒒,𝑠

𝒒,𝑠

 , (S43) 

 
𝑣 =

1

∑ 𝐶𝒒,𝑠𝒒,𝑠  
∑ 𝐶𝒒,𝑠

2|𝑣𝒒,𝑠|

𝜋
𝒒,𝑠

 , (S44) 

where we separated the conductance into a geometrical effective cross-section 𝐴cross , which depends on 𝑡, 𝑟0 

and 𝑅0 (Eq. S34), and a microscopic component 𝑀, explicitly indicating the specific heat capacity 𝑐 in 
J

K∙kg
 and the 
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average phonon radial velocity 𝑣. In Figure S8 and S9, we plot 𝑐 and 𝑣 as a function of temperature. We use 𝑡=0.65 

nm for the thickness of the MoSe2 monolayer and 𝜌 = 6900 𝑘𝑔/𝑚3. 

 

Figure S8: Numerical evaluation of the MoSe2 monolayer specific heat as a function of temperature (blue line). We compare 

the result with the numerical estimate of the specific heat of MoSe2 bulk and the measured specific heat of MoSe2 bulk (grey 

line) [18]. 

 
 

 

Figure S9: Numerical estimate of the average velocity 𝑣 (Eq. S44) as a function of temperature. We contrast it with the phonon 

group velocities of transversal and longitudinal acoustic modes (TA, LA). The average velocity 𝑣 is lowered by the contribution 

of the out-of-plane acoustic mode. 
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Now, we discuss heat capacity. Above, we introduced the equivalent heat capacity where we evaluated 

 𝑃 =
Δ𝐸monolayer

𝜏
 (S45) 

We take into account that temperature profile is not constant over the membrane, so that 

 𝑃𝜏 =  ∫ 𝑑𝜃
2𝜋

0

∫ 𝑟 𝑑𝑟 Δ𝐸monolayer(𝑟)
𝑅0

0

= 2𝜋 ∫ 𝑟 𝑑𝑟
𝐶model

𝜋𝑅0
2 Δ𝑇laser(𝑟)

𝑅0

0

 (S46) 

where 𝐶model is the membrane heat capacity evaluated when the temperature is not uniform over the suspended 

area due to laser absorption. Integrating and using Eqs. S32 and S33, we find  

 

𝑃𝜏𝑅0
2

2𝐶model
=  ∫ 𝑟 𝑑𝑟 Δ𝑇laser(𝑟)

𝑟0

0

+ ∫ 𝑟 𝑑𝑟 Δ𝑇laser(𝑟)
𝑅0

𝑟0

= (𝑇center − 𝑇0) (
𝑟0

2

2
+ 𝑟0(𝑅0 − 𝑟0)) 

 

(S47) 

 

Using 𝐾model = 𝑃/(𝑇center − 𝑇0), we have 

 
𝐶model =

𝐾model𝜏

2
𝑟0
𝑅0

− (
𝑟0
𝑅0

)
2 

(S48) 

 

Using 𝐾 = 𝛼 · 𝐾model and 𝐶 = 𝜏 · 𝐾, we get  

 𝐶 =
1

𝛽
Cmodel (S49) 

 
1

𝛽
= 𝛼 (2

𝑟0

𝑅0
− (

𝑟0

𝑅0
)

2

) (S50) 

 

We evaluate the specific heat capacity from the measurement of the equivalent heat capacity 𝐶 using 

 𝑐 =  
𝐶model

𝜋𝑅0
2 𝑡 𝜌

= 𝛽
𝐶

𝜋𝑅0
2 𝑡 𝜌

. (S51) 

with 𝛽 = 0.86 and 𝛽 = 0.85 for the 1.5 m and 2.5 m radius drum, respectively. 

 

 

Numerical methods  

Phonon harmonic and anharmonic properties have been calculated from first-principles within density functional 

perturbation theory [19-24] as implemented in the Quantum-ESPRESSO distribution [25]. We adopted the local-
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density approximation and norm-conserving pseudopotentials from the PSLibrary (http://qe-

forge.org/gf/project/pslibrary) and a plane-wave cutoff of 100 Ry. The MoSe2 monolayer is simulated in a slab 

geometry, with lattice parameter a=3.25 Å and a cell height c=6a. The Brillouin zone is integrated using a Gamma-

centered Monkhorst pack of 24x24x1 points for the electronic structure, 16x16x1 for harmonic phonon properties 

and 6x6x1 for anharmonic force constants. Phonon properties are then Fourier-interpolated to a finer mesh of 

128x128x1 points in order to compute thermal properties. A gaussian smearing of 2 cm-1 has been used for 

computing the diffusive thermal conductivity. Finally, the thickness of the MoSe2 membrane is taken as 0.644 nm, 

equal to the interlayer distance of bulk MoSe2. 
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