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I. QUANTUM ELECTRON TRANSPORT MEASUREMENTS

Figure 1a shows that the electrical characteristics of the nanotube studied in this work is

typical of ultraclean nanotubes [1]. Near V DC
G = 0 V, the conductance is suppressed to zero

due to the small energy gap of the nanotube [2]. For positive V DC
G values, p−n junctions are

formed near the metal electrodes. It creates Coulomb blockade peaks in the conductance

(Fig. 1b). For negative V DC
G , the nanotube is p-doped along the whole tube, resulting in a

larger conductance approaching the quantum conductance 4e2/h of small-gap nanotubes. In

this regime, the conductance is modulated due to quantum electron interference [3]. Here,

e is the charge of the electron and h is the Planck constant.

Figure 1c demonstrates that the nanotube is of high quality, since the modulation of the

conductance is periodic over a large range of V DC
G , and since this periodic modulation due

to electron interference would be deteriorated by a tiny amount of disorder.

We quantify the nanotube length L = 1.1 µm from the characteristic voltage bias VC =

1.5 mV of the electron interference pattern shown in Fig. 1c using L = hvF/2eVC [3]. Here,

vF = 8×105 m/s is the Fermi velocity of nanotubes. This length is consistent with the width

of the trench. We also obtain a similar length from the Coulomb blockade measurements in

Fig. 1b. From the separation ∆V DC
G = 18 mV between two conductance peaks, we obtain

the nanotube-gate capacitance CG = e/∆V DC
G = 8.9× 10−18 F. We get the length L ' 1 µm

of the suspended nanotube using

CG =
2πε0L

ln
(
2d
r

) , (1)

where ε0 is the vacuum permittivity, d = 350 nm the separation between the nanotube and

the gate electrode, and r the nanotube radius. This estimation of the length is less reliable

than the previous one because Eq. 1 does not take into account the screening of the electric
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FIG. 1. Electron transport measurements of the nanotube discussed in the main text.

(a,b) Conductance of the nanotube as a function of gate voltage measured at the base temperature

of the cryostat over two different gate voltage ranges. (c) Differential conductance as a function

of V DC
SD and V DC

G at the base temperature of the cryostat. The intersection of the white lines at

VC = 1.5 mV corresponds to the characteristic voltage bias of the electron interference

field between the nanotube and the gate electrode by the source and the drain electrodes.

II. TRANSDUCTION OF DISPLACEMENT INTO CURRENT

We measure the mechanical vibrations of the nanotube with the two-source technique [4,

5]. Displacement modulations result in current modulations by applying an input oscillating
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FIG. 2. Variance of the mechanical displacement as a function of temperature. Mea-

surements are carried out on the nanotube discussed in the main text.

voltage with amplitude V AC
SD across the nanotube. We assume that the resonance used in

the measurements of the main text corresponds to the fundamental eigenmode polarized in

the direction perpendicular to the surface of the gate electrode, which is a good assumption

since the signal of the driven vibrations of this resonance is much larger than the signal of

the other resonances. The current δI at the frequency close to the difference between the

mode eigenfrequency and the frequency of the source-drain voltage is

δI = βδz, (2)

β =
1

2

dG

dVG
V DC
G V AC

SD

C ′G
CG

. (3)

Here, δz is the displacement of the nanotube, dG/dVG is the derivative of the conductance

with respect to the gate voltage, V DC
G is the static gate voltage, and C ′G is the derivative of

CG with respect to z. We quantify C ′G = 4.1× 10−12 F/m using the relation C ′G = CG

d ln(2d/r)
.

We estimate the effective mass m = 3.5 ag from the measurement of the variance of the

displacement noise 〈δz2〉 as a function of temperature T (Fig. 2). The displacement noise of

the nanotube is measured with the electrical method described in Ref. [5] and using Eqs. 2

and 3. We compare the measured slope of 〈δz2〉 as a function of T to the slope expected
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from the equipartition theorem, which reads mω2
0〈δz2〉 = kbT . Here, ω0/2π is the resonance

frequency of the eigenmode and kb is the Boltzmann constant. This mass is consistent with

the mass of a ∼ 1.1 µm long nanotube.

We evaluate the nanotube radius r ' 1.5 nm from the effective mass using the relation

m =
1

2

(
2mC ×

2πr × L
Ah

)
, (4)

where mC = 2 × 10−26 kg is the mass of a carbon atom and Ah = 5.2 × 10−20 m2 is the

surface area of a hexagon in the honeycomb lattice of graphene. The coefficient 1
2

on the

right-hand side of Eq. 4 comes from the normalisation of the mass of the resonator due to

the shape of the eigenmode. We assume here that the modal shape is φ(x) = cos(πx/L), a

good approximation for the shape of a beam under tension.

III. DENSITY OF HELIUM LAYERS

We can reliably quantify the ratio between the number NHe of adsorbed helium atoms

and the number NC of carbon atoms at the surface of the nanotube from the measurement

of the resonance frequency [6, 7]. This ratio, called coverage, reads

φ =
NHe

NC

=
mC

mHe

[(
fNT
0

fNT+He
0

)2

− 1

]
, (5)

where mC and mHe are the atomic masses of carbon and helium atoms, respectively. Here,

fNT+He
0 is the resonance frequency of the nanotube covered by helium atoms, and fNT

0 is

Areal density (atoms/nm2)

f0 (MHz) nanotube graphite

Pristine substrate 36.34 0 0

First layer completed 34.41 11.0 11.4

Second layer completed 32.97 8.1 8.6

Third layer completed 31.69 7.2 7.6

Fourth layer completed 30.39 7.3 7.6

TABLE I. Areal density of completed helium layers on the nanotube. The density of helium

adsorbed on graphite is also shown [8].
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the resonance frequency of the pristine nanotube without any adsorbed helium atoms. The

coverage of noble gas atoms adsorbed on nanotube resonators can be successfully quantified

with Eq. 5 because these adsorbed atoms increase the mass of the resonator but do not

modify its spring constant [6, 7]. Indeed, the interaction between noble gas atoms is much

weaker than that between the carbon atoms of the nanotube.

Table I shows the areal density of the different completed helium layers. The areal

density is estimated from the coverage and taking into account the cylindrical geometry

that normalizes the density by the factor r
r+i·dl

. Here, r is the nanotube radius, i is the layer

number, and dl is the layer-layer separation. The characterisation of the nanotube in the

previous section indicates that r = 1.5 nm. The separation between layers is taken equal to

dl = 0.27 nm, the separation between the first helium layer and graphite [9]. Table I shows

that the estimated areal densities are remarkably close to the values measured with helium

adsorbed on graphite [8].

IV. RESONANCE FREQUENCY SHIFT – A MASS EFFECT OR A SPRING

EFFECT?

We look at the f0 dependence of two different frequency shifts, namely ∆f0 and δf0

(see Fig. 2 in the article), which show opposite behavior. The resonance frequency of the

nanotube covered by helium depends on three parameters: the helium pressure in the cell

PHe, the temperature T , and the gate voltage V DC
G . The resonance frequency of the bare

nanotube depends only on the DC gate voltage V DC
G as

f0(V
DC
G ) =

1

2π

√
kNT(V DC

G )

mNT

, (6)

where the nanotube stiffness kNT can be changed by tuning the gate-voltage V DC
G , in contrast

to the nanotube mass mNT. We measure that f0(V
DC
G ) is temperature independent at a

fixed V DC
G . Straining the nanotube with gate voltage is very efficient, since f0(V

DC
G ) can be

varied by ∼ 16% in Figs. 2b and 2d of the article. Due to the large nanotube stiffness,

the longitudinal deformation of the nanotube is minute and the helium film structure also.

Furthermore, the surface density of helium on the nanotube is fixed by the temperature and

the helium pressure in the cell.
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The resonance frequency of the nanotube coated by a thin helium film is:

f1 =
1

2π

√
kNT + kHe
mNT +mHe

≈ f0(1−
mHe

2mNT

+
kHe

2kNT
) (7)

High-frequency nanotube mechanical resonators are highly sensitive to helium coating.

Loading the nanotube with a single helium layer gives rise to a mass increment mHe/mNT
<∼

10% and a decrease of the resonance frequency (f1 − f0)/f0 ≈ −mHe/2mNT
<∼ −5%. A

second effect of the helium coverage is the modification of the nanotube spring constant due

to a modification of the surface tension. The effect is extremely small because of the weak

He-He interaction compared to the covalent C-C interaction, but still measurable thanks

to the remarkable sensitivity of high-Q nanotube resonators. By studying the V DC
G depen-

dence of the frequency shifts, it is possible to distinguish the two contributions. Indeed, as

a function of the helium pressure and the temperature, the frequency shift is expressed as

f0 − f1 ≈ f0(V
DC
G )

(
mHe(PHe, T )

2mNT

− kHe(PHe, T )

2kNT (V DC
G )

)
, (8)

f0 − f1 ≈
(

1

2mNT

)(
f0(V

DC
G )×mHe(PHe, T )− kHe(PHe, T )

4π2f0(V DC
G )

)
. (9)

Mass effects increase proportionally to f0 whereas stiffness effects decrease proportionally to

(1/f0). The former depends on the adsorbed helium mass, consequently on the gas pressure,

on temperature, possibly also on changes in superfluid mass fraction. The later addresses

the physics of the helium surface tension which carries additional signatures of the layering

transition. Note that a V DC
G -dependence of kHe and mHe would intervene as a second order

correction in the developments, which justifies the above variable separation.

Let us now look at the f0 dependence of the frequency shift ∆f0 that is indicated on

Fig. 2c of the article. We expect it to be a mass effect due to the helium evaporation

between 10 mK and 10K so that ∆f0 should obey the equation:

∆f0 ≈
f0(V

DC
G )mHe(PHe, 10 mK)

2mNT

. (10)

∆f0 should be an increasing function of f0, in agreement with the measurements on Fig. 2b

of the article.

On the opposite, Fig. 2d of the article shows that δf0 is a decreasing function of f0 which

demonstrates that this slight frequency dip is due to some change in the elastic constant

kHe. Indeed it writes now:

δf0 ≈ −
δkHe(PHe)

8π2mNTf0(V DC
G )

(11)
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where δkHe is the change in the helium surface tension from 10 mK to the temperature

of the minimum (about 0.5K, see Fig. 2c of the article). Here, δkHe is negative and we

attribute it to the increasing entropy of the helium film. In this case, one expects that δf0

decreases with f0, which is confirmed by our measurements (see Fig. 2d of the article). We

cannot attribute it to some superfluid-normal transition in the film because this would be

a mass effect with the opposite dependence on f0. As shown in the next section, we have

calculated the temperature dependence of the helium surface tension, which can describe

our measurements.

V. SURFACE TENSION – THERMALLY EXCITED THIRD SOUND STATES

We show in the main text that the measured spring constant of the nanotube covered

by superfluid helium is temperature dependent. In this section, we relate this observation

to the change of the surface tension of the superfluid due to thermally excited third sound

states.

The surface tension γ is the free energy of the superfluid surface per unit area. When

varying the superfluid surface area by δA, the energy changes as

δE = γ · δA. (12)

The surface tension contributes to the spring constant of the resonator. Any small deviation

from the equilibrium position of the superfluid leads to a spring force. The modulation

δA is related to the modulation of the resonator length δl when the nanotube is vibrating.

The modulation is δA = 2πrHe · δl where rHe is the radius of the surface of the helium

superfluid covering the nanotube. In order to relate δl to the displacement δz of the nanotube

resonator, we consider the fundamental mode of a doubly-clamped nanotube string. The

transverse displacement of the resonator along its axis x is given by Z(x, t) = δz(t) · φ(x) =

δz(t) · cos(πx/L) with φ(±L/2) = 0 the boundary conditions at the clamping points. When

the nanotube moves by δz, the total length becomes

L+ δl =

∫ +L/2

−L/2
dx

√
1 +

(
∂Z

∂x

)2

' L+
1

2

∫ +L/2

−L/2
dx

(
∂Z

∂x

)2

= L+
π2

4L
δz2. (13)

As a result, the energy associated to the surface tension of the superfluid film is the energy
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of a harmonic oscillator δE = 1
2
kHeδz

2 with spring constant

kHe = γπ3 rHe

L
. (14)

The restoring force of the helium film acts in parallel to the restoring force of the pristine

carbon nanotube kNT, so that the total spring constant is ktotal = kHe + kNT. It is important

to emphasize that the helium film contributes weakly to the total spring constant, since the

interaction between noble gas atoms is 2 orders of magnitude weaker than that of covalent

C-C bonds, as demonstrated experimentally in Refs. [6, 7]. For this reason, any change of

the surface tension leads to a minuscule change of the resonance frequency of the resonator,

as observed in our experiments discussed in the main text.

It is interesting to compare the typical elongation δl in our experiments with the sepa-

ration between two helium atoms. The modulation of the elongation is small so that the

number of helium atoms adsorbed on the suspended nanotube remains constant. Indeed,

the amplitude of the thermal vibrations is ≤ 300 pm below T = 1 K so that the associated

nanotube elongation is δl ≤ 0.2 pm using Eq. 13. For comparison, the separation between

helium atoms in thin films is typically 0.3 nm.

The temperature dependence of the surface tension arises from the change of the free

energy of the superfluid, that is, from the thermal excitation of two-dimensional third sound

states. To compute γ(T ), we follow the calculations of Atkins using third sound states

instead of the surface tension waves in three-dimensional superfluid helium [10]. Below 1 K,

the third sound dispersion is given by

ω = ck (15)

with the angular frequency ω, the superfluid velocity c, and the wavevector strength k [11].

In order to calculate the density of states, we first count the number Nst of states within

the surface πk2

Nst =
L2
0

(2π)2
πk2 (16)

with L2
0 the surface area. The density of states is given by the number of states within the

frequency δω and per unit of surface,

g(ω)δω

L2
0

=
1

L2
0

δNst =
1

L2
0

dNst

dk
(
dω

dk
)−1δω =

ω

2πc2
δω (17)



9

The internal energy of thermally excited third wave states per unit surface is then

Uth =

∫ ∞
0

h̄ω

exp(h̄ω/kBT )− 1
g(ω)dω =

1

2πc2
(kBT )3

h̄2

∫ ∞
0

x2

exp(x)− 1
dx = 0.38

(kBT )3

(h̄c)2
. (18)

When the internal energy varies as U ∝ T λ, the free energy scales as F = − 1
λ−1U from

simple thermodynamics [10]. As a result, the variation of the free energy per unit surface

when increasing the temperature from 0 K is

∆γ(T ) = Uth − TS = −1

2
Uth. (19)

Here, S is the entropy per unit surface. As a result, we obtain

∆γ(T ) = −0.19
(kBT )3

(h̄c)2
. (20)

The change in free energy is related to the change in spring constant using Eq. 14

δkHe(T ) = −5.89
rHe

L

(kBT )3

(h̄c)2
, (21)

When increasing the temperature from 0 K, the resonance frequency f0 of the nanotube

string covered by the helium film is expected to decrease as

δf0(T ) =
1

2

δkHe(T )

kNT

f0 = −0.074
1

mNTf0

rHe

L

(kBT )3

(h̄c)2
. (22)

VI. THEORETICAL CALCULATIONS

Figures 3a,b show the energy per 4He atom as a function of density for the first and

second layer, respectively. Calculations are performed using diffusion Monte Carlo method,

as described in ref [12]. The calculations are performed for a nanotube radius of 1.43 nm.

On Fig. 3a is displayed the energy of atoms in both a liquid (red) and solid (blue)

configuration when the nanotube is covered by one layer. The ground state of the system

corresponds to a liquid of density 0.0432± 0.003 Å
−2

. From a density of 0.087± 0.005 Å
−2

up, the solid structure is more stable than the liquid. We then conclude that at the second

layer promotion (density of ≈ 0.12 Å
−2

) the first layer is solid. This is consistent with

measurements and calculations on helium adsorbed on graphite [8, 13].

On Fig. 3b is displayed the energy of the atoms in the second layer. The ground state

of the system always corresponds to a liquid. The result of these calculations is different
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FIG. 3. Calculated energy per atom in the first layer and the second layer (a) First

layer. (b) Second layer. Energy per atom for both a liquid (red circles) and a solid (blue squares).

from that of previous works on helium adsorbed on graphite, where the second layer at

completion is solid [8, 13]. More work has to be carried out in order to be able to make a

firm conclusion on the phase of the second layer adsorbed on nanotubes. For this, a more

advanced model can be used in order to take into account for instance the corrugation of
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the nanotube.
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