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A) Mixing technique

The nanotube resonator is actuated by applying an oscillating voltage V,*° cos(2z ft) on

the backgate of the wafer. It induces an oscillating electrostatic force Fgrive ON the
nanotube, which reads:

Fame = C'y V2OV, cos(27 ft) @

with C'; the derivative of the nanotube-gate capacitance with respect to the tube

deflection and VgDC the static voltage applied on the gate. The induced motion oz of the
nanotube modulates C4. To track this capacitance modulation, we use the nanotube as a
frequency mixer. The measurement consists of applying a second oscillating voltage
Ve’ cos(2r ft+ 276 t+a) between the source and the drain and measuring the mixing

current Inix at the frequency of from the drain. « is the phase between the two voltage
sources (of = 10 kHz). We have:
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with d?/%the transconductance of the nanotube and &, the phase between the motion
9

and the driving force. We note that the first term in eq. 2 has a purely electrical origin
and results in a background signal at any frequencies, while the second term becomes
important only when f matches the mechanical resonance frequency of the nanotube.

At weak driving force we can model the nanotube resonator with a classical harmonic
oscillator characterized by a mechanical resonance frequency f,=1/27z-./k/mg ,
with k the spring constant and m¢ the effective mass. The resonance (oz as a function of
f) has a Lorentzian shape:
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with Q the quality factor. To extract the parameters fo and Q, we fit the measured Iyix(f)
to
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The parameter A corresponds to the background current signal, which is extracted from
the experimental data far from the resonance. B is a fitting parameter.
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B) Coupling mechanical oscillations to conducting electrons in the Coulomb
blockade regime

In the Coulomb blockade regime, the electronic charge residing on the dot is gqo: = -Ne,
with N the number of charges. The electrostatic potential of the dot Vg, reads

DC
—Ne + CgVy _ Y0t —Gc

Vot = (®)
o Cdot Cdot Cdot
with g, =-C, v, the control charge and Cqc the dot capacitance.
The electrostatic force applied on the nanotube F is:
1., 2
I:el = EC g (VgDC _Vdot)
(6)

F, ~ %C'g (\/gDc2 - 2ngCvdot)

The first term in eq. 6 is constant. Hence, the relevant force F due to Coulomb blockade
can be written as

c',Vvroe
F=- g:g (qdot_qc) (7)
dot

We note that this force vanishes at high temperature. Indeed, we have qqo: = c When the
thermal energy kgT is larger than the charging energy E.=e%/Co.

We now assume that the nanotube is mechanically oscillating as a harmonic oscillator
= o7, (8)

with odzp the amplitude of the motion and f the frequency. As a result, the tube-gate
capacitance and the control charge oscillate as

&, =C, o™ 9)
N, = _&ngDC (10)

when 0z is small. Consequently, the dot charge is also oscillating
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with P the occupation probability of the dot. We note that P is related to the
conductance G of the dot in a simple way in the quantum regime of Coulomb blockade
when the level spacing AE >> kgT (C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991))
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C
I' being the tunnel rate at the contacts. Thus, 4ot IS given by
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Turning back to the force F, we have

F =—
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This force is proportional to oz as oF =—dkoz so it is equivalent to a spring force and it
changes the resonance frequency as

f, o V) ( 26 _j (15)

We now look at dissipation. When the nanotube position is oscillating, the charge on the

nanotube oscillates as o4t and has to flow through the tunnel resistance at the
nanotube-electrode interface with the current

2G
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The energy loss Egiss during one oscillation cycle is given by
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The energy stored by the mechanical resonator is E :%kézg. Hence, the quality factor

Q quantifying the losses reads

1E C'Z 2vDC 2
1/Q = Sdiss _ o 9 [ g je (18)
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We note that of and Q could be expressed as functions of (T—P (and not G). However,

c

the measured Coulomb blockade peaks are not fully periodic in VgDC and the peak

heights are different (Fig. 3A). This reflects that the nanotube dot is not perfect and is to
some extent disordered. To include these irregularities in the model, we choose to
express of and Q as functions of G. This also allows us to obtain a better agreement
between the model and measurements for the oscillations of of and Q.

C) Alternative description based on rate equation

An alternative way to describe the coupling between mechanical oscillations and the
charge transport is to employ the rate equation. Assuming that the charging energy E. is
the dominant energy, we consider that only two charge states are available close to a
conductance peak. They are labeled N and N+1 with probability P and 1-P,
respectively. The rate equation reads

%P =T, xP+T,, x(1—P) (19)

with T'on (Ios) the rate for electrons to tunnel onto (off) the dot. In addition, we have
Lo = Zro‘//(,ua _eVS(D) —E¢)
S,D

Lo = zro(l_‘//(ﬂel —eVg(p) — EF))
SD

(20)
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with T’y the tunnelling rate at the two contacts (barriers are considered to be symmetric),
w the Fermi-Dirac distribution, s the electrochemical potential of the dot, Vsp) the
voltage of the source (drain), Er the Fermi Energy at the contacts, u the chemical
potential of the dot and Ug(N) the electrostatic energy of the dot with N electrons. Here,
q. =—C;Vs —CpV, —C,V, is the generalized control charge, with Cs and Cq the source

and drain capacitances of the quantum dot.

Mechanical oscillations and charge transport are coupled via the position dependent
rates I'on and Iosr. Considering small 6zo (and Vo) = 0) we have from eq. 8, 9 and 10

e e
He = /’lelq +_§qc (21)
Cdot

so that
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where g, Tols and Tonerm are the electrochemical potential in the absence of
mechanical oscillations, the rate in the absence of mechanical oscillations and the
derivative of the rate with respect to g, . It is straightforward to show that P oscillates
with the amplitude oP

q
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with T's = 2 T’y and ¥ the derivative of the Fermi-Dirac distribution with respect to
energy.

Using eq 7, eq 23 and &,,, = —€doP, we get
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The first term is real so it is in phase with the motion. It is responsible of the shift of the
resonance frequency. The second term in eq. 2 (imaginary part) is out of phase with the
motion and leads to energy dissipation. In the quantum regime of Coulomb blockade,
the shift of the resonance frequency and the quality factor become similar to eq. 15 and

eq. 18, respectively, provided that (Fﬂj <<1.

z
D) Numerical simulations
We assume, in our analytical analysis and for the numerical modeling, that the lowest
vibrational eigenmode of the doubly-clamped nanotube is excited. We describe the

nanotube deflection by a displacement z, which is well described by the mass-spring
equation

z:-(z;zfo)zz—mLui (25)

where y =2zm, f,/Q, is the damping term and Qo is the quality factor arising from the
loss mechanisms different from the electron-vibration coupling. F is given by
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where (qdot> is the charge on the dot averaged over a long time compared to the electron

tunneling time (the average charge can be introduced if the electron tunneling time is
much shorter than the oscillation period). We define Vg%c as the gate voltage for which

the energy is at the middle of the Coulomb gap. Moreover, <qd0t> =—-eN —eP (assuming

N electrons on the dot). The probability P is evaluated from eq. 19. The electric current
at the drain electrode is given by

I(t)=ePxT2 —e(l-P)[ o (27)
D D H
[, and I, are given by
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In the simulation, we reproduce the mixing experiment by assuming that the applied
gate voltage consists of a constant part é\/gDC, which gives the voltage offset from

Vg'?f, and an alternative AC voltage with amplitude VgAC modulated at frequency f,

V' cos(24t) . We consider Vp = 0 and Vg =V, cos(27ft + 2z&t) . The simulation

comprises iterative numerical solution of equations 19, 25 and 27 for the nanotube
deflection oz and the probability P. After many iteration steps, the response of the
system becomes periodic (I(t), z(t) and P comprise only harmonics of types
2z(nf + mof) where nm = 0,1,2). The current amplitude at of, which is the

experimentally measured quantity, is obtained by Fourier-transforming the current

2 ; ‘ i (t)eiz”"“dt‘ (29)
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where T; is the time at which the transient effects have disappeared and the system
response is periodic, and T is the time at which simulation stops.

The simulation is repeated for a range of driving frequencies, after which the resonant
frequency and the quality factor are extracted from the sampled function 14(f) in the
same way as from experimental data.

The following parameters have given the best agreement between calculations and

experiments at T =1.5K: V/*“ =0.02mV, e/Cqt = 3meV, e/Cy = 34 meV, fy =
50.3MHz, Qo = 180, C*? /k =1.16.10F*/Nm, To= 1.28.10'%s™.

E) Dissipation at high temperature due to the electron current
Here we consider damping at high temperature that arises from the current oscillation.
When the nanotube is mechanically oscillating, the charge on the nanotube is



Hype =—C, 'V o, (30)
The corresponding current is

N ype = —27fC V> 52,61 (31)
The energy loss Egiss during one oscillation cycle is given by

| 27 f

Egiss = JO. Ealtibedt = (VgDCCg,5Zo )2

(32)

The energy stored by the mechanical resonator is E :%k&é. Hence, the quality factor

Q quantifying the losses reads
. C -2 V DC2
1/Q:iEd|ss =24 9 9
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Using C,*/k=6-10"F*/Nm and G=1/(20 kQ) for the sample discussed in the paper,
we obtain Q=7-10°.



