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A) Mixing technique 
 
The nanotube resonator is actuated by applying an oscillating voltage  on 
the backgate of the wafer. It induces an oscillating electrostatic force Fdrive on the 
nanotube, which reads: 
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with  the derivative of the nanotube-gate capacitance with respect to the tube 

deflection and  the static voltage applied on the gate. The induced motion δz of the 
nanotube modulates Cg.  To track this capacitance modulation, we use the nanotube as a 
frequency mixer. The measurement consists of applying a second oscillating voltage 

between the source and the drain and measuring the mixing 

current Imix at the frequency δf from the drain. α is the phase between the two voltage 
sources (δf = 10 kHz). We have: 
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with DC
gdV

dG the transconductance of the nanotube and θm  the phase between the motion 

and the driving force. We note that the first term in eq. 2 has a purely electrical origin 
and results in a background signal at any frequencies, while the second term becomes 
important only when f matches the mechanical resonance frequency of the nanotube.  
 
At weak driving force we can model the nanotube resonator with a classical harmonic 
oscillator characterized by a mechanical resonance frequency effmkf /2/10 ⋅= π , 

with k the spring constant and meff the effective mass. The resonance (δz as a function of 
f) has a Lorentzian shape: 
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with Q the quality factor. To extract the parameters f0 and Q, we fit the measured Imix(f) 
to  
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The parameter A corresponds to the background current signal, which is extracted from 
the experimental data far from the resonance. B is a fitting parameter. 
 

 
B) Coupling mechanical oscillations to conducting electrons in the Coulomb 
blockade regime  
 
In the Coulomb blockade regime, the electronic charge residing on the dot is qdot = -Ne, 
with N the number of charges. The electrostatic potential of the dot Vdot reads 
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with  the control charge and Cdot the dot capacitance. DC

ggc VCq −=

 
The electrostatic force applied on the nanotube Fel is: 
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The first term in eq. 6 is constant. Hence, the relevant force F due to Coulomb blockade 
can be written as 
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We note that this force vanishes at high temperature. Indeed, we have qdot = qc when the 
thermal energy kBT  is larger than the charging energy Ec=e2/Cdot. 
 
We now assume that the nanotube is mechanically oscillating as a harmonic oscillator  
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with δz0 the amplitude of the motion and f the frequency. As a result, the tube-gate 
capacitance and the control charge oscillate as 
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when δz0 is small. Consequently, the dot charge is also oscillating  
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with P the occupation probability of the dot. We note that P is related to the 
conductance G of the dot in a simple way in the quantum regime of Coulomb blockade 
when the level spacing ΔE >> kBT (C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991)) 
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Γ being the tunnel rate at the contacts. Thus, δqdot is given by 
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Turning back to the force F, we have  
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This force is proportional to δz as zkF δδδ −= so it is equivalent to a spring force and it 
changes the resonance frequency as 
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We now look at dissipation. When the nanotube position is oscillating, the charge on the 
nanotube oscillates as δqdot and has to flow through the tunnel resistance at the 
nanotube-electrode interface with the current 
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The energy loss Ediss  during one oscillation cycle is given by 
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The energy stored by the mechanical resonator is 2
02

1 zkEm δ= . Hence, the quality factor 

Q quantifying the losses reads 
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We note that δf and Q could be expressed as functions of 
cdq

dP  (and not G). However, 

the measured Coulomb blockade peaks are not fully periodic in  and the peak 
heights are different (Fig. 3A). This reflects that the nanotube dot is not perfect and is to 
some extent disordered. To include these irregularities in the model, we choose to 
express δf and Q as functions of G. This also allows us to obtain a better agreement 
between the model and measurements for the oscillations of δf and Q. 
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C) Alternative description based on rate equation 
 
An alternative way to describe the coupling between mechanical oscillations and the 
charge transport is to employ the rate equation. Assuming that the charging energy Ec is 
the dominant energy, we consider that only two charge states are available close to a 
conductance peak. They are labeled N and N+1 with probability P and 1-P, 
respectively.  The rate equation reads 
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with Γon (Γoff) the rate for electrons to tunnel onto (off) the dot. In addition, we have 
 

( )

c
dot

dot

dot

dot
el

elelcel

DS
FDSeloff

DS
FDSelon

q
C
q

C
qNU

NUNU

EeV

EeV

−=

−++=

−−−Γ=Γ

−−Γ=Γ

∑

∑

2
)(

)()1(

)(1

)(

2

,
)(0

,
)(0

μμ

μψ

μψ

                                                                (20) 

 
with Γ0 the tunnelling rate at the two contacts (barriers are considered to be symmetric), 
ψ the Fermi-Dirac distribution, μel the electrochemical potential of the dot, VS(D) the 
voltage of the source (drain), EF the Fermi Energy at the contacts, μc the chemical 
potential of the dot and Uel(N) the electrostatic energy of the dot with N electrons. Here, 

ggDDSSc VCVCVCq −−−= is the generalized control charge, with Cs and Cd the source 
and drain capacitances of the quantum dot. 
 
Mechanical oscillations and charge transport are coupled via the position dependent 
rates Γon and Γoff. Considering small δz0 (and VS(D) = 0) we have from eq. 8, 9 and 10 
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where ,  and Γ’on(off) are the electrochemical potential in the absence of 
mechanical oscillations, the rate in the absence of mechanical oscillations and the 
derivative of the rate with respect to . It is straightforward to show that P oscillates 
with the amplitude δP 
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with ΓΣ  = 2 Γ0 and Ψ´ the derivative of the Fermi-Dirac distribution with respect to 
energy. 
 
Using eq 7, eq 23 and Peqdot δδ −= , we get 
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The first term is real so it is in phase with the motion. It is responsible of the shift of the 
resonance frequency. The second term in eq. 2 (imaginary part) is out of phase with the 
motion and leads to energy dissipation. In the quantum regime of Coulomb blockade, 
the shift of the resonance frequency and the quality factor become similar to eq. 15 and 

eq. 18, respectively, provided that 1<<⎟⎟
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D) Numerical simulations 
 
We assume, in our analytical analysis and for the numerical modeling, that the lowest 
vibrational eigenmode of the doubly-clamped nanotube is excited. We describe the 
nanotube deflection by a displacement z, which is well described by the mass-spring 
equation 
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 where 00 /2 Qfmeffπγ = is the damping term and Q0 is the quality factor arising from the 
loss mechanisms different from the electron-vibration coupling. Fel is given by 
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where dotq  is the charge on the dot averaged over a long time compared to the electron 
tunneling time (the average charge can be introduced if the electron tunneling time is 
much shorter than the oscillation period). We define  as the gate voltage for which 

the energy is at the middle of the Coulomb gap. Moreover, 

DC
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N electrons on the dot). The probability P is evaluated from eq. 19. The electric current 
at the drain electrode is given by 
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In the simulation, we reproduce the mixing experiment by assuming that the applied 
gate voltage consists of a constant part , which gives the voltage offset from  

, and an alternative AC voltage with amplitude  modulated at frequency f, 

. We consider VD = 0 and V . The simulation 
comprises iterative numerical solution of equations 19, 25 and 27 for the nanotube 
deflection δz and the probability P. After many iteration steps, the response of the 
system becomes periodic (I(t), z(t) and P comprise only harmonics of types 
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δπ +  where n,m = 0,1,2). The current amplitude at δf, which is the 
experimentally measured quantity, is obtained by Fourier-transforming the current 
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where Ti is the time at which the transient effects have disappeared and the system 
response is periodic, and Tf  is the time at which simulation stops. 
The simulation is repeated for a range of driving frequencies, after which the resonant 
frequency and the quality factor are extracted from the sampled function Iδf(f) in the 
same way as from experimental data. 
The following parameters have given the best agreement between calculations and 
experiments at T =1.5K: ,  e/Cdot = 3meV,  e/Cg = 34 meV, f0 = 
50.3MHz, Q0 = 180, C , Γ0 = 1.28.1010 s-1. 
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E) Dissipation at high temperature due to the electron current 
Here we consider damping at high temperature that arises from the current oscillation. 
When the nanotube is mechanically oscillating, the charge on the nanotube is    
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The corresponding current is 
 

tfiDC
ggtube ezVifCI πδπδ 2

0´2−=                                                                              (31) 
 

The energy loss Ediss  during one oscillation cycle is given by 
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The energy stored by the mechanical resonator is 2
02

1 zkEm δ= . Hence, the quality factor 

Q quantifying the losses reads 
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Using = F2/Nm and G=1/(20 kΩ) for the sample discussed in the paper, 

we obtain Q= . 
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