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Equations 3 and 4 in the main text are drawn from reference [1]. Please note that we use a different
notation than in [1] in order to reserve certain symbols for physical quantities.

A) Derivation of equation 2

We apply VgAC (1) :VgAC cos(wt) with @ = 2f . The resulting force F cos(wt) induces an oscillation of the
nanotube position z = Re[Z (w)] cos(wt) + IM[Z (w)]sin(wt) with
Z(w) = ﬂF/m(a)g —0* —iw,w!Q)+ ﬂF/m(a)(f — o’ +io,0lQ) (S0)

and an oscillation of the nanotube conductance [2]
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When applying V. (t) =V, cos((@ - sw)t + ¢, ) , we get
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at frequency ow .

B) Derivation of equation 3

As we explain in the main text, we tune the phase of the lock-in amplifier with which we measure the mixing
current, such that X oc Re[Z(w)] and Y oc Im[Z(w)]. The secular perturbation theory in [1] employs

dimensionless variables that are related to the physical ones by
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where a denotes the coefficient of the Duffing cubic force, m the resonator mass, F the coefficient of the
driving force Fcos(at), and @, = 27f,. The other variables are defined in the main text.

In a next step, a complex amplitude A(T) is introduced, where T =¢-{ is a slow time variable and
e=1/Q, (Q, =ma,/y is the quality factor, y being the linear damping constant). Following [1] we use the
ansatz



g(t)—‘/_(A(T) e +cc.), (S4)

where C.C. denotes complex conjugation. Assuming a steady-state solution of the form
A(T) =ae"" =|aje'’e™” (S5)

this leads to the expressions

&(f) = |alVe cos(@ -t +¢) (S6)
2(t) =|aly/ y, /o cos(at + @) . (S7)

Using a = Re[a]+ilm[a] and &' =cos(QT +f) +isin(QT +f), we get that

2(t) = \/ yw, /a(Re[a]cos(at) — Im[a]sin(at)) (S8)

Without pumping, we have at resonance (defined as the frequency for which the motional amplitude is
largest) Re[a]=0 and [Im[a]|=|g| where g =Ge&*? (using eq. (1.30) of [1] and assuming that the
nonlinear damping force is negligible), so

X =0 and Y

unpumped — =r-g (Sg)

unpumped
with r a real constant (using eq. S2 and S8).

When the pumping is on (i.e. the spring constant is modulated as k(1+ H cos(w,t))), eq. (1.52) of [1] reads

a:—ei”/4(COS(A¢+ﬂ/4)+iSIn(A¢+ﬂ/4))| | (S10)
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where A¢ is the phase of the driving force with respect to the pumping and h/2 =V, /V, . (here

h=H/e= 2% df, —2V, and Voo =(f, -dVg/dfo)/QO ). Please note that the equation appears in [1] without
0 g

a minus sign. We measure at resonance

Y =r-Im[a] . (S11)
Using eg. S9, S10, and S11, we obtain

Y . i

pumped | _ || il cos(Ag+x/4) i sin(Ag+r/4) (s11)
Yunpumped 1_VP /VP,C 1+VP /VP,C

C) Derivation of equation 4

Introducing the nonlinear damping force 77222' in the Newton equation, Lifshitz and Cross obtained (eq.

1.70 of [1])
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. 2Q, df
where b = Ae"*/4is a real constant, o = 7 and he _2Q, dfy
o fo dV,
the right-hand side has a different sign in [1] (because of the minus sign in eq. S10). Following [1], we are
interested in a time-independent solution (db/dT =0) at maximum gain (A¢ = -7/ 4). At resonance, we

V, ¢ . Please note that the last term on

have Q = 0. We require a solution for Im[a]= Im[A]=b/+/2 , which satisfies
h
h :%hcalm[a]z —i&+ he - (S13)
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After inserting the physical units and using eq. S3 and S8, we get

nQ, fV ~ FV
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which we simplify to

Vo =UA? - 4V, ¢ (S15)
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with U, v, and V, . as fitting parameters. Here, we make use of the relations A = ‘Ypumped /Y inpumpea | @N
Y oc Im[Z(w)] to write

Im[Z ()] = A~ IM[Z(@)]npure (S16)
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independent of any renormalization of the motion amplitude.

so that U= . Please note that the value of V, . is

D) Additional measurements of self-oscillations.

We present self-oscillation measurements at 300 K in Fig. S1. The device is the same as that in the main
text, but measured at a time when mechanical and electrical characteristics were different: namely, the

conductance is larger by 20 % and dfO/dVg of the first mechanical mode is higher (7 MHz/V). In

addition, the measurements are performed at a different gate voltage (—1.9 V). The quality factor obtained
from the self-oscillation threshold is ~ 230 . This is much larger then the quality factor determined from the
lineshape of the driven resonance, which is 10-15 (Fig. S1b).

Figure S2 shows measurements from a second carbon nanotube resonator. The quality factor obtained
from the self-oscillation threshold is ~1000 . This is again much larger than the quality factor determined
from the lineshape of the driven resonance, which is about 100-220 (Fig. S2c).
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Figure S1: (a) Self-oscillations at 300 K and with Vg =-1.9 V. Here, f;, =48 MHz, dfo/dVg =7 MHz/V,
and V, . ~ 30 mV. The corresponding quality factor is ~ 230. (b) Quality factor as a function of the driving

voltage VgAC in the absence of parametric pumping, obtained by fitting the resonance lineshape with the
predictions of a damped harmonic oscillator.
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Figure S2: Data from a second nanotube device at T =60 K and V, =1.8 V (a) and (b) Self-oscillation

with increasing and decreasing frequency sweeps, respectively. Self-oscillations are detected above
Ve =10 mV in a tongue-shaped region, which corresponds to a quality factor of ~1000 ( f, ~168 MHz

and dfo/dVg =14.2 MHz/V). In contrast to the data shown in Fig. 3 of the main text, no hysteresis is

observed. (c) Quality factor as a function of the driving voltage VgAC in the absence of parametric pumping,
obtained by fitting the resonance lineshape with the predictions of a damped harmonic oscillator.
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