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Equations 3 and 4 in the main text are drawn from reference [1]. Please note that we use a different 
notation than in [1] in order to reserve certain symbols for physical quantities. 
  
A) Derivation of equation 2 
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and an oscillation of the nanotube conductance [2] 
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When applying ))cos(()( E
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at frequency  . 
 
 
B) Derivation of equation 3 
 
As we explain in the main text, we tune the phase of the lock-in amplifier with which we measure the mixing 
current, such that )](~Re[ zX   and )](~Im[ zY  . The secular perturbation theory in [1] employs 
dimensionless variables that are related to the physical ones by 
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where   denotes the coefficient of the Duffing cubic force, m  the resonator mass, F  the coefficient of the 
driving force )cos( tF  , and 00 2 f  . The other variables are defined in the main text. 

 
In a next step, a complex amplitude )(TA  is introduced, where tT    is a slow time variable and 

0/1 Q  (  /00 mQ   is the quality factor,   being the linear damping constant). Following [1] we use the 

ansatz 
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where ..cc  denotes complex conjugation. Assuming a steady-state solution of the form 
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this leads to the expressions 
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Using ]Im[]Re[ aiaa   and )sin()cos()( tTitTe tTi  , we get that  
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Without pumping, we have at resonance (defined as the frequency for which the motional amplitude is 

largest) 0]Re[ a  and ga ]Im[  where 2/3 Gg  (using eq. (1.30) of [1] and assuming that the 

nonlinear damping force is negligible), so  
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with r

 

a real constant (using eq. S2 and S8). 
 
When the pumping is on (i.e. the spring constant is modulated as ))cos(1( tHk p ), eq. (1.52) of [1] reads 
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where   is the phase of the driving force with respect to the pumping and CPP VVh ,/2/   (here 
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a minus sign. We measure at resonance 
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 Using eq. S9, S10, and S11, we obtain 
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C) Derivation of equation 4 
 

Introducing the nonlinear damping force zz 2  in the Newton equation, Lifshitz and Cross obtained (eq. 
1.70 of [1]) 
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where 4/iAeb  is a real constant, 
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the right-hand side has a different sign in [1] (because of the minus sign in eq. S10). Following [1], we are 
interested in a time-independent solution ( 0/ dTdb ) at maximum gain ( 4/  ). At resonance, we 

have 0 . We require a solution for     2/ImIm bAa  , which satisfies 
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After inserting the physical units and using eq. S3 and S8, we get 
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which we simplify to 
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with u , v , and CPV ,  as fitting parameters. Here, we make use of the relations unpumpedpumped YY  and 

)](~Im[ zY   to write 
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independent of any renormalization of the motion amplitude. 
 
 
 
 
D) Additional measurements of self-oscillations. 
 
We present self-oscillation measurements at 300  K in Fig. S1. The device is the same as that in the main 
text, but measured at a time when mechanical and electrical characteristics were different: namely, the 

conductance is larger by 20  % and gdVdf0  
of the first mechanical mode is higher ( 7  MHz/V). In 

addition, the measurements are performed at a different gate voltage ( 9.1  V). The quality factor obtained 
from the self-oscillation threshold is 230~ . This is much larger then the quality factor determined from the 
lineshape of the driven resonance, which is 10 -15  (Fig. S1b). 
 
Figure S2 shows measurements from a second carbon nanotube resonator. The quality factor obtained 
from the self-oscillation threshold is 1000~ . This is again much larger than the quality factor determined 
from the lineshape of the driven resonance, which is about 100 - 220  (Fig. S2c). 
 
 
 



 
Figure S1: (a) Self-oscillations at 300  K and with 9.1gV  V. Here, 480 f  MHz, 70 gdVdf  MHz/V, 

and 30~,CPV  mV. The corresponding quality factor is 230~ . (b) Quality factor as a function of the driving 

voltage AC
gV  in the absence of parametric pumping, obtained by fitting the resonance lineshape with the 

predictions of a damped harmonic oscillator. 
 
 
 

 

 
Figure S2: Data from a second nanotube device at 60T  K and 8.1gV  V (a) and (b) Self-oscillation 

with increasing and decreasing frequency sweeps, respectively. Self-oscillations are detected above 
10, CPV  mV in a tongue-shaped region, which corresponds to a quality factor of 1000~  ( 168~0f  MHz 

and 2.140 gdVdf  MHz/V). In contrast to the data shown in Fig. 3 of the main text, no hysteresis is 

observed. (c) Quality factor as a function of the driving voltage AC
gV  in the absence of parametric pumping, 

obtained by fitting the resonance lineshape with the predictions of a damped harmonic oscillator. 
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