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I. DEVICE FABRICATION

Our nanoresonators consist of a suspended carbon nanotube clamped between two metal elec-

trodes, as depicted in Fig. 1(a) and (b) of the main text. The devices are fabricated as follows. A

trench is etched into a highly resistive Si wafer coated with SiO2 and Si3N4. W and Pt are evapo-

rated into the trench to create a gate electrode (G). In a second lithography step, a continuous line

is exposed across the trench. After a deposition of W/Pt and lift-off, the line results in the source

(S) and drain (D) electrodes separated by the trench (these electrodes are electrically isolated from

the gate due to the undercut profile of the Si3N4/SiO2 substrate). W and Pt are chosen because

of their high melting points that allow the growth of carbon nanotubes. An island of catalyst is

patterned on the drain (or source) electrode using electron-beam lithography. Nanotubes are grown

by chemical vapour deposition from these islands. In about 1 out of 20 cases, a nanotube grows

across the trench and establishes electrical contact between S and D. This growth is the last step

of the fabrication process so that nanotubes are not contaminated with residues from resists and

chemicals [1–3]. The device we present in the main text has a length of 1.77µm. The separation

between the nanotube and the gate electrode is 370 nm. The rather large roughness of the S and

D electrodes in this device does not allow us to measure the nanotube radius with atomic force

microscopy.

II. MEASUREMENTS DETAILS

Our measurements are carried out at pressures typically below 10−8 mbar and temperatures

between 60 and 70 K. In order to clean the nanotube surface, we perform a current annealing step

every day (6µA for 300 s). We observe only very minor variations of the electrical conductance

and mechanical resonance frequencies of the nanotube from day to day.
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The chip containing the device is mounted on a printed circuit board. dc and ac voltages are

added through a bias tee outside the chamber. The low frequency mixing current is measured from

the drain (D) electrode and is low-pass filtered through a capacitor to ground (1 nF).

We discuss first the frequency mixing (FM) technique [4]. A driving voltage V ac is applied to

the source electrode. Modulating the frequency (with a modulation rate of 671 Hz and a frequency

deviation of 100 kHz) results in a mixing current (Imix) at 671 Hz. The gate electrode is biased

with a dc voltage Vg to tune the resonance frequencies.

In the two-source technique [5], we apply the driving voltage V ac to the gate in addition to a

dc voltage Vg. The motion of the nanotube is detected by applying a second, smaller voltage V ac
s

to the source. The two oscillating voltages are slightly detuned, and the amplitude signal of Imix

is measured at the detuning frequency (δω/2π = 10 kHz).

The modulus of Imix measured with the two-source technique has the form

Imix =
1

2
V ac
s

∂G

∂Vg

(
V ac cos(δωt− ϕE) + z0Vg

C ′

C
cos(δωt− ϕE − ϕM )

)
(S1)

where G is the conductance of the nanotube, ϕE is the phase difference between the voltages

applied to source and gate, t is time, z0 is the mechanical amplitude, C is the capacitance between

the nanotube and the gate, C ′ is its derivation with respect to the nanotube displacement, and

ϕM is the phase difference between the nanotube displacement and the driving force.

The measurements in the paper of Imix as a function of the drive frequency f give a resonance

lineshape that is to a rather good approximation proportional to the response of the motional

amplitude as a function of f , since the purely electrical component of Imix (first term in Eq. S1)

is much lower than the mechanical component (second term in Eq. S1).

We verify that the harmonics of the RF sources (signals at 2, 3, or 1/2 times the drive frequency)

can be neglected. These harmonics are far below the smallest driving voltage for which we can

detect a resonance. Namely, the voltage of the harmonics is typically 1000 times lower than V ac.

III. ESTIMATION OF DYNAMICAL AMPLITUDE

Equation S1 allows estimating the motional amplitude of the resonator by comparing the signal

on resonance, Imax, to the purely electrical background far from resonance, Iback [5]. Using the

approximation C = 2πε0L
ln(2(d−z)/r) , we get that
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FIG. S1: Maps of resonance frequencies as a function of gate voltage. (a) Two-source measurement

at low driving force (obtained by measuring Imix as a function of f and Vg with V ac = 1.7 mV and

V ac
s = 0.3 mV). Colour scale: 0 (blue) to 1 nA (red). For comparison, we plot the schematic of the

modes detected with the FM technique in (b) and the results of the ANSYS simulation in (c). The

inset in (c) shows the static nanotube shape (measured in the absence of an applied dc voltage)

that is used in the simulation.

z0 ' d · ln
(

2d

r

)
Imax
Iback

V ac

Vg
(S2)

with d = 370 nm the equilibrium distance between the nanotube and the gate electrode. Since

we cannot measure the diameter of the nanotube due to the large surface roughness of the electrodes

in the studied device, we use a typical value for the radius (r = 1.5 nm). We find the following

values for the maximum mechanical amplitudes z0 in Fig. 1 of the main text: z0 ' 3.2 nm in

Fig. 1(c), z0 ' 8.7 nm in Fig. 1(d), z0 ' 0.9 nm in Fig. 1(e), and z0 ' 2.1 nm in Fig. 1(f).

IV. MAPS OF RESONANCE FREQUENCIES AS A FUNCTION OF GATE

VOLTAGE: COMPARISON BETWEEN THE TWO-SOURCE AND THE FM

TECHNIQUES AT LOW DRIVING FORCES

We carry out measurements of the resonance frequencies as a function of Vg with the two-source

technique at low driving force [Fig. S1(a)]. Two modes are detected with a large signal, a third
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one with a small signal. To facilitate a comparison between the two measurement techniques, we

plot the schematic of the modes detected with the FM technique in Fig. S1(b). We find that the

modes producing a large signal with the two-source technique are those we label N and P . The

mode producing a weak signal is identified as O, while M is not detected at all (it does show up

at larger driving forces).

The ANSYS simulation helps understanding the relative strengths of the signals [Fig. S1(c)].

The details of the simulation are discussed in section VII. N and P correspond to modes moving

essentially in the plane orthogonal to the gate electrode. Since the two-source method measures

the oscillation of the nanotube-gate capacitance, the signal of modes N and P are expected to be

large, in agreement with the experiments. M and O are modes moving essentially parallel to the

gate electrode. As such, the corresponding signals are expected to be small, which also agrees with

the measurement.

ANSYS simulations indicate that modes M , N , O, and P have either 0 or 2 nodes. The mode

with 1 node moving perpendicular to the gate electrode is predicted to appear between N and O

[dashed line in Fig. S1(c)]. This mode is not detected because the oscillation of the capacitance

is (nearly) zero due to the symmetry of the mode shape. ANSYS predicts that the mode with 1

node parallel to the gate has a frequency larger than that of modes O and P .

V. MAPS OF RESONANCE FREQUENCIES AS A FUNCTION OF GATE VOLT-

AGE: COMPARISON BETWEEN LOW AND HIGH DRIVING FORCES

In the maps of resonances as a function of Vg the number of detected resonances depends on

the driving force Fd. Figure S2(a) shows the spectrum obtained with the two-source method for a

low driving force. Upon increasing Fd by a factor 10, many more resonances appear Fig. S2‘(b)].

A comparison of the resonance frequencies reveals that the additional resonances are almost all

harmonics of the four modes M , N , O, and P (see following section).

The same scenario develops for measurements with the FM technique at high driving force:

additional resonances are detected [Fig. S3(a) and (b)] and identified as harmonics of the four

modes (see following section). Here, the number of discernible harmonics is even larger than that

measured with the two-source technique.
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FIG. S2: Map of resonance frequencies as a function of gate voltage. (a) Two-source measurement

at low driving force (obtained by measuring Imix as a function of f and Vg with V ac = 1.7 mV and

V ac
s = 0.3 mV). Colour scale: 0 (blue) to 1 nA (red). (b) Same measurement with a larger driving

force (V ac = 17 mV and V ac
s = 1.1 mV). White arrows point out the lowest mode which is faintly

visible. Colour scale: 0 (blue) to 7 nA (red). (c) Schematic of the modes detected with the FM

technique for comparison.

VI. HARMONICS

In Fig. S4, we plot the four modes and their harmonics on top of each other by dividing each

of them by their respective harmonic order [i.e. the index number in Fig. S3(c)]. In the case of

the modes N , O, and P , the curves are perfectly on top of each other. For mode M , the scaling

is slightly less good. Harmonics can be generated by several mechanisms. In the following, we

will briefly discuss the parametric effect, electrical nonlinearities, and mechanical nonlinearities as

possible origin of the harmonics.

A common way to explain harmonics is based on the parametric effect [6, 7]. A mode at a

resonance frequency f0 can be actuated by varying the resonator spring constant k at a frequency

2f0/j, where j is an integer ≥ 1. It is easy to parametrically drive a nanotube resonator with a

gate voltage, because f0 (and therefore k) is widely tunable with Vg [8]. There exists a threshold

V ac
th above which the motion sets in: this threshold takes the form V ac

th = (f0∂Vg/∂f0)/Q, where

∂f0/∂Vg is the change of the resonance frequency with gate voltage. For mode N , we get ∂f0/∂Vg =
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FIG. S3: Map of resonance frequencies as a function of gate voltage measured with the FM

technique. (a) Frequency modulation measurement at large driving force (obtained by measuring

Imix as a function of f and Vg with V ac = 20 mV). Colour scale: 0 (black) to 1 nA (dark red). (b)

Low frequency range at even higher driving force (V ac = 40 mV). Colour scale: 0 (black) to 0.2 nA

(dark red). (c) Map of all detected modes and harmonics. The number in the label designates the

harmonic order of a resonance. Black lines correspond to resonances that cannot be assigned to a

detected mode.

36 MHz/V close to Vg = 4 V. Together with the quality factor Q ∼ 350 and f0 ∼ 124 MHz, this

yields a threshold of 10 mV. This is consistent with the harmonics for mode N in Fig. S3(a)

(V ac = 20 mV). However, parametric excitation cannot account for the harmonics of order 4 and

5 of mode M .

A second scenario for harmonics is related to electrical nonlinearities in the circuit. Nonlinear-

ities in current-voltage characteristics can generate forces at 2, 3, 4,... times the frequency of the

applied V ac and thus lead to harmonics with an index number n < 1. However, harmonics with

an index number n > 1 are unlikely to have an electrical origin.

Mechanical nonlinearities are predicted to give rise to harmonics. For instance, the quadratic

nonlinear force can cause harmonics at 2f0 and f0/2, and the cubic nonlinear force can induce

harmonics at 3f0 and f0/3 [6, 9]. The combination of the quadratic and the cubic nonlinear forces

can lead to harmonics with index 1/2, 1/3, 1/4, 2, 3, 2/3, 3/2,... [6], which is in agreement with

our measurements.
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FIG. S4: Comparison of the modes with their harmonics. Each harmonic is divided by its respective

order [corresponding to the index in Fig. S3(c)]. (a) Mode M and harmonics. The subharmonics

(M2, M4, and M5) deviate slightly at low values of Vg. (b) Mode N and harmonics. (c) Mode O

and harmonics. (d) Mode P and harmonics.

In conclusion, the origin of the harmonics is not clear at the moment and this calls for future

work.

VII. SIMULATIONS

We perform finite element simulations with ANSYS (R) Release 13.0 to reproduce the Vg de-

pendence of the resonance frequencies. The mechanical properties of carbon nanotubes are well

described by continuum elasticity and are independent of the chirality [10]. For these simulations,
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FIG. S5: Static shape of the nanotube. (a) Scanning electron micrograph of the nanotube. The

electrodes are not voltage biased. Yellow dots mark the data points that we used to model the

nanotube shape (for Vg = 0 V). Scale bar: 600 nm. (b) Points extracted from the electron micro-

graph (black dots) and polynomial fit used for the nanotube model (red line). x is the coordinate

along the axis connecting the two clamping points. y is the coordinate standing orthogonal to it.

we use a tube with length L = 1.77µm, radius r = 1.5 nm, wall thickness ∆r = 0.335 nm, mass

density ρ = 2300 kg/m3, and Young modulus E = 1 TPa. We use the shape of the nanotube ex-

tracted from the scanning electron micrograph of the device (Fig. S5). We assume that the static

deformation is only in the horizontal plane when the device is not voltage biased.

We use the 1-D BEAM188 element suitable for analyzing slender beam structures. 1-D

BEAM188 is a two-node element in 3-D and has six degrees of freedom at each node: transla-

tions in the x, y, and z directions and rotations about the x, y, and z directions. A circular tube

section is associated to the element by providing the inner and the outer radii. The constraints at

the clamping points are fixed by setting all degrees of freedom to zero. Because of the high aspect

ratio of nanotubes, we use point-like clamping conditions. The effect of the angle of the nanotube

with respect to the electrodes is thus not accounted for. The electrostatic force induced by the

dc voltage applied on the gate electrode, Fd, is analytically calculated. For each gate voltage,

the static deformation of the nanotube is calculated by performing a nonlinear structural analysis.

This static solution is used as a base for the modal analysis.
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VIII. EULER-BERNOULLI EQUATION: MODE FREQUENCIES

In the following, we demonstrate that a good qualitative understanding of the motion of a sus-

pended nanotube is possible from the Euler-Bernoulli equation. This approach provides analytical

solutions that capture the behaviour of the system and that are similar to the solutions of the

finite-element simulations performed with ANSYS.

The Euler-Bernoulli equation for the static and dynamic displacement of a thin beam reads

ρS
d2z

dt2
= −EI d

4z

dx4
+

[
T0 +

ES

2L

∫ L

0

(
dz

dx

)2

dx

]
d2z

dx2
+ g(t) (S3)

where ρ is the mass density, S the beam’s cross-sectional area, z the displacement, t the time, E

the Young modulus, I the second moment of inertia about the longitudinal axis, x the coordinate

along the axis, T0 the built-in tension, L the resonator length, and g(t) a unit length force that

accounts for the effect of the gate electrode in our experiment. We divide the displacement into a

static and a dynamic component,

z(x, t) = zsφs(x) + z1(t)φ1(x) (S4)

where zs is the maximum static displacement, z1 is the maximum dynamic displacement, and

φs(x), φ1(x) are the normalized static and dynamic profiles along the beam.

In a first example, we develop Eq. S3 for the case of a single mechanical mode with

φs(x) = φ1(x) = sin(πx/L) (S5)

where both the static and dynamic profiles are in the plane perpendicular to the gate electrode.

This mode profile is strictly correct for negligible bending rigidity (EI → 0). We choose this ansatz

because it allows a simple analytical treatment of our problem. Moreover, we will see at the end of

this section that this ansatz predicts gate voltage dependencies of the resonance frequencies that

are in qualitative agreement with finite element simulations. We insert Eq. S4 and Eq. S5 into

Eq. S3, multiply Eq. S3 by φ1(x), and integrate it from 0 to L to get
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d2z1(t)

dt2
= − 1

ρS

[
EIzs

(π
L

)4
+ T0zs

(π
L

)2
+
ES

4
z3s

(π
L

)4
− 4

π
g(t)

]
− 1

ρS

[
EI
(π
L

)4
+ T0

(π
L

)2
+

3

4
ESz2s

(π
L

)4]
z1(t)

−
[

3E

4ρ
zs

(π
L

)4]
z21(t)−

[
E

4ρ

(π
L

)4]
z31(t). (S6)

In a static equilibrium position, the sum of the static terms in the first bracket on the right

hand side of Eq. S6 is zero:

EIzs

(π
L

)4
+ T0zs

(π
L

)2
+
ES

4
z3s

(π
L

)4
=

4

π
g(t). (S7)

The other terms of Eq. S6 can be rewritten in the usual form of a Newton equation of motion,

d2z1(t)

dt2
= −ω2

0z1(t)− α2z
2
1(t)− α3z

3
1(t). (S8)

From a comparison of Eq. S6 to Eq. S8, we see that both α2 and α3 are positive, and that

α2 ∝ zs (meaning that α2 will vanish if the tube is straight). Further, both nonlinear coefficients

are inversely proportional to L4 and will become large for a short tube. They arise from additional

tension that is generated when the beam bends (the integral term
∫ L
0

(
dz
dx

)2
dx in Eq. S3 becomes

nonzero).

We repeat this calculation for other modes. The profile of the second mode, φ2(x), has the same

shape as φ1(x), but stands orthogonal to it, moving parallel to the gate electrode. In this case, the

final equation describing the second mode is somewhat simpler than that for the first mode:

d2z2(t)

dt2
= − 1

ρS

[
EI
(π
L

)4
+ T0

(π
L

)2
+
ES

4
z2s

(π
L

)4]
z2(t)−

[
E

4ρ

(π
L

)4]
z32(t). (S9)

Again, α3 is positive, but here α2 = 0 because the beam features no static bending in the

direction of its vibrations. The linear restoring force of z1(t) is always larger than that of z2(t),

causing ω1 ≥ ω2.

We assume that the third and fourth modes have the profile

φ3(x) = φ4(x) = sin(2πx/L), (S10)
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moving towards and parallel to the gate electrode, respectively. The resonance frequencies of

the two modes are degenerate. Neither of these modes are detected in our experiment due to the

antisymmetrical mode profile. The solution in this case reads (with i = 3 or 4)

d2zi(t)

dt2
= − 1

ρS

[
EI

(
2π

L

)4

+ T0

(
2π

L

)2

+
ES

16
z2s

(
2π

L

)4
]
zi(t)−

[
E

4ρ

(
2π

L

)4
]
z3i (t). (S11)

We assume that the fifth and sixth modes are analogous to the third and fourth, but with

φ5(x) = φ6(x) = sin(3πx/L). (S12)

Again, they are degenerate. We get (with j = 5 or 6)

d2zj(t)

dt2
= − 1

ρS

[
EI

(
3π

L

)4

+ T0

(
3π

L

)2

+
ES

36
z2s

(
3π

L

)4
]
zj(t)−

[
E

4ρ

(
3π

L

)4
]
z3j (t). (S13)

At this point, we can calculate the resonance frequencies of the first six modes as a function of

Vg. For this, we determine the static displacement that provides an equilibrium of forces by solving

Eq. S7, where

g(t) =
1

2
c′V 2

g (S14)

is the unit length force due to Vg, and

c′ =
2πε0

d ln(2d/r)2
(S15)

is the differentiation of the unit length capacitance with respect to the displacement. Here, d is

the distance between the nanotube and the gate electrode, ε0 = 8.85 · 10−12 Fm−1 is the electrical

permittivity of free space, and r is the nanotube radius. We measure d = 370 nm by atomic force

microscopy (AFM), but the large surface roughness of the electrodes of this device does not allow

the measurement of r. We therefore chose a typical value from earlier nanotubes grown by the

same method (r = 1.5 nm). We also use E = 1 TPa, ρ = 2300 kg/m [11], L = 1.77µm (measured

by AFM), and wall thickness ∆r = 0.335 nm. From these values, we calculate the second moment

of inertia I = 2.928 · 10−38 kg m2 and the tubular cross-section S = π((r + ∆r)2 − (r − ∆r)2) =

3.157 · 10−18 m2. The only free parameter, T0, is chosen by optimizing the agreement of the mode
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FIG. S6: Calculation of resonance frequencies as a function of Vg for a straight nanotube. (a)

Resonance frequencies of the first six modes calculated from the Euler-Bernoulli equation. red: z1,

green: z2, black dashed: z3 and z4 (not detected in our experiment due to the antisymmetrical mode

profile), blue: z5, orange: z6. Inset: shape of the nanotube when Vg = 0 V. (b) ANSYS simulation

for the same set of parameters. The results are very similar to the analytical calculations.

frequencies to the experimental results. We obtain T0 = 0.1 nN. The resulting zs as a function of Vg

is shown in Fig. 2(e) of the main text. Finite element calculations with a straight tube yield values

of zs close to the results of Eq. S7, see dashed line in Fig. 2(e) of the main text. The resonance

frequencies of the six first modes are depicted in Fig. S6(a).

IX. EULER-BERNOULLI EQUATION: COUPLING BETWEEN MODES

In the previous section, we have disregarded terms that couple different modes. The coupling

has the same origin as the quadratic and cubic nonlinearities (α2 and α3). It arises from the tension

that is induced in a mode when another mode oscillates (through the integral term
∫ L
0

(
dz
dx

)2
dx in

Eq. S3). As a consequence, the coupling coefficients are of the same order of magnitude as α2 and

α3. Assuming that z(x, t) = zsφs(x) + z1φ1(x) + z2φ2(x), Eq. S3 leads to

d2z1(t)

dt2
= −ω2

0z1(t)− α2z
2
1(t)− α3z

3
1(t)− β22z22(t)− ε122z1(t)z22(t) (S16)

where ω0, α2, and α3 are given by the expressions in Eq. S6, β22 = E
4ρ

(
π
L

)4
zs, and ε122 = E

4ρ

(
π
L

)4
12



(all other summands βjk and εjkl that appear in Eq. 1 of the main text are zero). The equation of

motion for the lowest mode moving parallel to the gate electrode is

d2z2(t)

dt2
= −ω2

0z2(t)− α3z
3
2(t)− β12z1(t)z2(t)− ε112z2(t)z21(t) (S17)

where ω0 and α3 are given by Eq. S9 and the coupling coefficients are β12 = E
2ρ

(
π
L

)4
zs and

ε112 = E
4ρ

(
π
L

)4
.

X. ONSET OF NONLINEARITY

Nonlinear effects set in when z0 reaches a critical value zc. From Ref. [7], we infer zc =

1.24ω0/
√
Q |α| assuming nonlinear damping to be negligible. Here, α is the effective nonlinear

coefficient (see next section) that can be extracted from the backbone function connecting all

resonance peaks at different driving amplitudes. From Ref. [7], we have

ωmax − ω0 =
3

8

αz20
ω0

, (S18)

where ωmax/2π is the frequency where the amplitude is largest and ω0/2π is the resonance

frequency in the linear regime. In Fig. 1(d) of the main text, we have ωmax = 2π · 46.85 MHz,

ω0 = 2π ·46.35 MHz, z0 = 8.7 nm, and thus get α = 3.2·1031 m−2s−2. Using Q = 230 extracted from

the resonance width in Fig. 1(c) of the main text, this leads to a critical amplitude of zc = 4.2 nm,

which is consistent with z0 = 3.2 nm in Fig. 1(c) (where the resonance displays no hysteresis) and

with z0 = 8.7 nm in Fig. 1(d) (where there is hysteresis). We repeat the same procedure for the

data in Fig. 1(f) of the main text. Here, ωmax = 2π ·123.5 MHz, ω0 = 2π ·124.25 MHz, z0 = 2.1 nm,

and we get α = −2.2 · 1033 m−2s−2. With Q = 354, we calculate zc = 1.1 nm, which again is

consistent with the results in Fig. 1(e) and (f) ( where z0 = 0.9 nm and 2.1 nm, respectively).

XI. STATIC DISPLACEMENT

The reversal of the asymmetry of the resonance between Fig. 1(d) and (f) of the main text is

due to a sign change of the effective nonlinearity α [7, 12] which depends on the quadratic and

cubic coefficients in Eq. S8 as [6]
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α = α3 −
10

9
ω−20 α2

2. (S19)

A comparison of Eq. S6 and Eq. S8 reveals that

α2 =
3E

4ρ
zs

(π
L

)4
(S20)

and

α3 =
E

4ρ

(π
L

)4
. (S21)

The asymmetry of the resonance can be used to estimate the static displacement zs of the

resonator at different values of Vg. With α known from the estimations in the last section, we can

insert Eq. S20 and Eq. S21 into Eq. S19 in order to obtain zs. With E = 1 TPa, ρ = 2300 kgm−3,

and L = 1.77µm, we get zs = 2.8 nm for Vg = 1.5 V, and zs = 13 nm for Vg = 4 V.

XII. ELECTROSTATIC NONLINEARITIES

In the previous sections, we have shown that the sign change of the effective nonlinearity α

(from a positive to a negative value) as a function of Vg is consistent with the expected increase

of the quadratic nonlinearity α2. A negative α could also have an electrostatic origin [7, 12].

The quadratic and cubic nonlinearities are αel2 = − 1
2mC

′′′V 2
g and αel3 = − 1

2mC
′′′′V 2

g , where m

is the effective mass of the resonator and C ′′′ and C ′′′′ are the third and fourth derivatives of

the capacitance with respect to displacement. The values calculated for Vg = 4 V are αel2 =

−4.4 · 1022 m−1s−2 and αel3 = −4.0 · 1029 m−2s−2, which are at least 3 orders of magnitude smaller

than the mechanical nonlinearities above. We therefore neglect electrostatic nonlinearities in the

analysis of our experiment.

XIII. RESONANCE LINESHAPES

In Fig. 4 of the main manuscript, we show resonance lineshapes with exotic features that we

associate with mechanical coupling between commensurate modes of the nanotube. Here, we show

how these features vanish and how a usual Duffing nonlinearity is recovered when we reduce the
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FIG. S7: Resonance lineshape for different driving forces. The resonance is measured with the

two-source method for Vg = 1.88 V and V ac
s = 0.28 mV. V ac = 0.56 mV in (a), V ac = 2.2 mV in

(b), V ac = 3.4 mV in (c), and V ac = 4.5 mV in (d). A conventional Duffing nonlinearity (with

α < 0) is recovered at the lowest driving force. Sweeps are performed with decreasing frequency.
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FIG. S8: Mixing current as a function of f and Vg for different driving forces. Imix is measured

with the two-source technique with V ac
s = 0.28 mV. V ac = 0.56 mV in (a), V ac = 1.1 mV in (b),

V ac = 2.2 mV in (c), V ac = 3.4 mV in (d), and V ac = 4.5 mV in (e). Sweeps are performed with

decreasing frequency. Panel (b) corresponds to Fig. 4(f) of the main text.
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FIG. S9: Increase of the resonance width with V ac. We measure the resonance of mode N at

Vg = 1.5 V with the FM technique for V ac = 0.1 mV (black), V ac = 0.12 mV (red), V ac = 0.15 mV

(blue), and V ac = 0.2 mV (green). The distance between the two minima flanking the resonance

peak (solid bars) corresponds to the resonance width ∆f = f0/Q.

driving force. The different panels in Fig. S7 correspond to the same resonance for different driving

forces (∝ V ac).

A second example with increasing driving force is displayed in Fig. S8. Here, we can observe the

evolution from an almost unbroken line (resonance frequency versus Vg) in Fig. S8(a) to a highly

exotic response with multiple peaks and dips as a function of f in Fig. S8(e).

XIV. NONLINEAR DAMPING

We recently reported that the resonance width ∆f = f0/Q of nanotube and graphene mechan-

ical resonators can depend on the driving voltage V ac. We attributed this phenomenon to the

nonlinear damping force ηz2ż [13]. In the present device, the dominant bistability behaviour pre-

vents observing nonlinear damping above V ac ∼ 0.2 mV. Nontheless, we found an increase of the

resonance width for V ac ≤ 0.2 mV (Fig. S9). In this measurement, we use the frequency modulation

technique, which produces two characteristic minima flanking the resonance peak. The separation

of these minima corresponds to ∆f . A clear increase of ∆f is seen between V ac = 0.1 mV (below
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FIG. S10: Map of resonance frequencies as a function of Vg. (a) Frequency modulation measurement

at low driving force (obtained by measuring Imix as a function of f and Vg with V ac = 4 mV). Three

resonances are detected with a large signal, a fourth one shows up faintly. Colour scale: 0 (black) to

0.1 nA (dark red). (b) Same measurement with a larger frequency range and V ac = 40 mV. Colour

scale: 0 (black) to 0.1 nA (dark red). (c) Schematic of the map of the resonance frequencies as a

function of Vg. Resonances that cannot be assigned to a mode are drawn in black. Black arrows

mark regions where modes O and P are commensurate and the resonances lineshapes become

exotic.
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FIG. S11: Modal coupling in the second device. Measurement with the two-source method (ob-

tained by measuring Imix as a function of f and Vg with V ac = 2.8 mV and V ac
s = 0.28 mV). Colour

scale: 0 (black) to 0.1 nA (dark red).
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this driving voltage the signal vanishes) and V ac = 0.2 mV.

XV. ADDITIONAL DEVICE

A second nanotube resonator exhibits similar behaviour as the one discussed so far. The results

of the second device are summarized in Fig. S10 and Fig. S11. Three modes are clearly visible at

low driving force, while a fourth resonance shows up faintly [Fig. S10(a)]. In these measurements,

we use the FM technique with V ac = 4 mV. With a larger driving force (V ac = 40 mV), many more

resonances appear [Fig. S10(b)]. With this device, we have mapped the frequency spectrum up to

500 MHz, and all detected resonances are depicted in Fig. S10(c) and labelled according to the most

probable harmonic spectrum. We can identify regions where two modes are commensurate or nearly

commensurate and the resonance lineshapes become exotic (black arrows). Around Vg = 4.4 V,

mode P has exactly twice the frequency of mode O (Fig. S11). There, we observe a discontinuity

in the map of the resonance frequency as a function of Vg.
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