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1 Power spectrum of the current through a vibrating nanotube

We consider the power spectrum of a suspended nanotube in the presence of gate voltage that has a large DC

component and a small AC component at a frequency close to the frequency of the eigenvibrations of the nanotube.

1.1 AC conductance of the vibrating nanotube

We assume that (i) the nanotube conductance is a function only of the total charge q of the nanotube, (ii) the

charge distribution along the nanotube is independent of the gate voltage Vg, and (iii) the system is in the adiabatic

limit, i.e. the vibration dynamics is much slower than the electron dynamics. Then q is related to the static gate

voltage Vg by the capacitance Cg. We consider the effect on conductance of the bending mode of the nanotube

which is polarized in the direction z perpendicular to the gate.

Based on the above assumptions we write the conductance as

G(q(t)) ≃ G(q0) +
∂G

∂q
δq(t) . (1)

Quite generally, in the adiabatic limit the charge increment δq(t) is a function of the time-dependent (AC) increment

of the gate voltage δVg(t) and the (AC) vibrational displacement δz(t), which is the displacement of the nanotube

at the antinode of the vibrational mode. For small |δVg| and |δz|

δq(t) ≃
(

∂q

∂Vg

)

z

δVg(t) +

(
∂q

∂z

)

V g

δz(t) . (2)
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The AC displacement δz can be separated into the fluctuating part for constant Vg and the δVg-induced part

δz(t) = δzfl(t) + δzind(t) δzfl(t) = [δz(t)]Vg
,

δzind(t) =

∫ t

−∞

δz(t)

δVg(t′)
δVg(t

′)dt′ . (3)

Since the charge and the gate potential are related by the capacitance Cg, which depends on the position of the

nanotube and thus on the vibrational displacement, Cg ≡ Cg(z), from Eqs. (2) and (3)

δq(t) = CgδVg(t) + (∂zCg)Vg
V DC
g δzfl(t) + (∂zCg)V g V

DC
g δzind(t) , (4)

where ∂zCg is the derivative of the capacitance with respect to the vibration displacement calculated for zero

displacement and V DC
g is the DC part of the gate voltage. From Eqs. (1) and (4), the AC component of the

conductance δG(t) = ∂qGδq(t) is directly related to the vibration displacement.

One can estimate the AC-gate voltage induced displacement δzind(t) by modeling the nanotube vibrational

mode by a harmonic oscillator with equation of motion

δz̈ind + 2Γδżind + ω2
0δz

ind =
F cos(ωGt)

M
, F = ∂zCgV

DC
g V AC

g , (5)

where M is the mass of the nanotube, 2Γ = ω0/Q is the decay rate of the oscillator with quality factor Q, and F

is the AC force amplitude. The stationary solution of this equation is

δzind(t) = Aind(ωG) cos(ωGt− ϕ), Aind(ωG) =
F/M√

(ω2
0 − ω2

G)
2
+ 4Γ2ω2

G

, ϕ = arctan

(
2ΓωG

ω2
0 − ω2

G

)
. (6)

On resonance ωG = ω0, and therefore the maximal amplitude is Aind
m = F/(2MΓω0), i.e.,

Aind
m = ∂zCgV

DC
g V AC

g /2MΓω0 . (7)

For classical vibrations, where kBT ≫ ~ω0 (in the experiment ~ω0/kB ∼ 3 × 10−4 K was much less than the

temperature), one can estimate the root mean square amplitude Afl of the fluctuating part of the displacement

δzfl from the expression Mω2
0(A

fl)2/2 ∼ kBT ,

Afl ≃
√

2kBT/Mω2
0 . (8)
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We now compare the three terms in Eq. (4) for the AC charge on the resonator. We use for the estimate the typical

experimental parameters T = 1.2 K, V DC
g = 1.45 V, V AC

g = 200 nV, M = 1× 10−20 kg, ω0 = ωG = 2π × 5.5 MHz,

Q = 48, 000, Cg = 1.8× 10−17 F, and ∂zCg = 1.2× 10−12 F/m. We start with the ratio of the third term and the

first term,
(∂zCg)V

DC
g δzind

CgV AC
g

∼
(∂zCg)

2 (
V DC
g

)2
CgMω2

×Q ≃ 700 ≫ 1 . (9)

Therefore, when an AC gate voltage resonates with vibrations of the nanotube, its effect on the AC conductivity

comes primarily through the excitation of the vibrations rather than through direct modulation. Respectively, we

will disregard the first term in Eq. (4).

We now compare the third and the second terms in Eq. (4). On exact resonance

(∂zCg)V
DC
g δzind

(∂zCg)V DC
g δzfl

=
Aind

m

Afl
∼ 1 . (10)

Therefore in the conditions of the experiment the AC conductance is

δG(t) = ∂qGδq(t) ≃ ∂qG (∂zCg)V g V
DC
g

(
δzfl(t) + δzind(t)

)
. (11)

The experimentally observable characteristic is the transconductance, dG/dVg. It is usually defined with respect

to slowly varying Vg. In the case of vibrations with a large quality factor a slow variation of Vg does not lead to

excitation of the vibrations. Then one has

∂qG ≈ C−1
g dG/dVg . (12)

This expression is used in the main text.

1.2 Current power spectrum

If we neglect the effect of delay, i.e. if the current depends only on the instantaneous conductance, the current

change due to the AC gate modulation is

δI(t) = δG(t)Vsd(t) , (13)

where Vsd is the source-drain voltage. If Vsd(t) = V DC
sd = const,

δI(t) ≃ ∂qG (∂zCg)V g V
DC
g V DC

sd

(
δzfl(t) +Aind(ωG) cos(ωGt− ϕ)

)
. (14)
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The autocorrelation function of the current is defined as

P̄I(τ) = ⟨δI(t+ τ)δI(t)⟩ = lim
T→∞

1

2T

∫ T

−T

δI(t+ τ)δI(t)dt

=
(
∂qG (∂zCg)V g V

DC
g V DC

sd

)2(
⟨δzfl(τ)δzfl(0)⟩+ 1

2

(
Aind(ωG)

)2
cos(ωGτ)

)
. (15)

Then the power spectrum of the current for ω ≥ 0 can be written as

PI(ω) =
(
∂qG (∂zCg)V g V

DC
g V DC

sd

)2 (
P fl(ω) + P ind(ω)

)
,

P fl(ω) =
1

2π

∫ ∞

−∞
dτeiωτ ⟨δzfl(τ)δzfl(0)⟩, P ind(ω) = Aind(ωG)

2 δ(ω − ωG)

4
. (16)

Here, P fl(ω) is the spectrum of the oscillator due to thermal fluctuations. It shows a peak at resonant frequency

ω0 with width ω0/Q. In PI(ω) there is also a delta function due to the periodic AC gate potential with area

∝ Aind(ωG)
2.

If the source-drain voltage is a periodic function of time, Vsd(t) = V AC
sd cos(ωsdt), the current autocorrelation

function becomes

P̄AC
I (τ) =

1

2

(
∂qG (∂zCg)V g V

DC
g V AC

sd

)2(
⟨δzfl(τ)δzfl(0)⟩ cos(ωsdτ) +

1

2
Aind(ωG)

2
∑
α=±

cos((ωG + αωsd)τ)

)
.

(17)

In the frequency range of interest, ω0 ≫ ω > 0, the power spectrum can be written as

PAC
I (ω) =

1

4

(
∂qG (∂zCg)V g V

DC
g V AC

sd

)2(
P fl(ω − ωsd) +

1

2
P ind(ω − |ωG − ωsd|)

)
. (18)

The modulating source-drain voltage shifts the peaks in the power spectrum by ±ωsd. Equation (2) in the main

text is obtained from Eqs. (16) and (18) using ∂qG = C−1
g ∂VgG (see Eq. (12)).

1.3 Current power spectrum in the presence of frequency noise

In the presence of frequency noise, the oscillator can be described by

δz̈ + 2Γδż + [ω2
0 + 2ω0ξ(t)]δz =

F cos(ωGt) + f(t)

M

⟨f(t)f(t′)⟩ = 4MΓkBTδ(t− t′) , (19)
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where F is given by Eq. (5) and f(t) describes a white thermal Gaussian noise. The noise ξ(t) is the frequency

noise. The frequency noise can have various origins, such as charge fluctuations and weak nonlinear coupling to

other eigenmodes; it can be of thermal or non-thermal nature. For high quality factor vibrations, it is reasonable

to model it by a Gaussian noise with a bandwidth that largely exceeds the decay rate Γ, but is small compared to

the vibration eigenfrequency ω0. Such noise is effectively white in the rotating frame.

For Γ and |ωG − ω0| much smaller than ω0 one can analyze the problem in the rotating frame using a standard

transformation

δz(t) = u(t) eiωGt + u∗(t) e−iωGt, δż(t) = iωG

(
u(t) eiωGt − u∗(t) e−iωGt

)
. (20)

The equation of motion for the complex amplitude u reads

u̇ ≃ − (Γ + i δω − iξ(t))u− iF

4MωG
+ fu(t) , (21)

where δω = ωG − ω0 and fu(t) = −(i/2MωG)f(t) exp(−iωGt). The solution can be conveniently written in the

form [2]

u(t) = uind(t) + ufl(t)

uind(t) =
F

4MωG

∫ t

−∞
dt1χ

∗(t− t1) exp

[
i

∫ t

t1

dt
′

1ξ(t
′

1)

]

ufl(t) = i

∫ t

−∞
dt1χ

∗(t− t1) fu(t1) exp

[
i

∫ t

t1

dt
′

1ξ(t
′

1)

]
, (22)

where χ(t) = i exp[−(Γ− iδω)t]. The terms with ufl and uind give, respectively, the spontaneous and induced parts

of the vibrational displacement δzfl and δzind. In the "slow" time compared to the reciprocal frequencies ω−1
0 , ω−1

G

the noise ξ(t) is δ-correlated, that is, in Eq. (22) one can set ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′).

As a result of frequency fluctuations, the expressions for the power spectra P fl(ω) and P ind(ω) of the spontaneous

fluctuations and the V AC
g -induced motion are modified. We start with the induced contribution. Taking into account

that the noise ξ(t) is Gaussian, we have for τ > 0

P̄ ind(τ) = ⟨uind(τ)
(
uind(0)

)∗⟩ eiωGτ + ⟨
(
uind(τ)

)∗
uind(0)⟩ e−iωGτ

=

(
F

4MωG

)2 ∫ τ

−∞
dt1χ

∗(τ − t1)

∫ 0

−∞
dt2χ(−t2) e

−Ξ(t1,t2;τ) eiωGτ + c.c.

=

(
F

4MωG

)2
1 + (D/Γ) exp[−(Γ +D + iδω)τ ]

(ωG − ω0)2 + (Γ +D)2
eiωGτ + c.c. (23)
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Here, Ξ(t1, t2; τ) = D(τ − t1 − t2)Θ(t1) +D(τ + |t1 − t2|)Θ(−t1), where Θ(x) is the step function. We note that,

unexpectedly, phase noise imposes correlations of the response, so that ⟨uind(τ)
(
uind(0)

)∗⟩ along with the term

|⟨uind(τ)⟩|2 has a term that exponentially decays in time.

As seen from Eq. (23), the pronounced feature in the power spectrum of modulated vibrations is the δ-shape

peak. On exact resonance, ωG = ω0, for ω > 0

P ind(ω) =
F 2

16M2ω2
G(Γ +D)2

[
δ(ω − ωG) +

D

πΓ

Γ +D

(Γ +D)2 + (ω − ωG)2

]
. (24)

A well-known result for the correlation function of thermally induced fluctuations is

P fl(τ) = ⟨ufl(τ)
(
ufl(0)

)∗⟩ eiωGτ + c.c. =
kBT

2Mω2
G

eiω0τ−(Γ+D) |τ | + c.c , (25)

and the power spectrum is, respectively,

P fl(ω) =
kBT

2πMω2
G

Γ +D

(ω − ω0)2 + (Γ +D)2
. (26)

The spectral peak (26) is Lorentzian with full width at half-maximum (in Hz)

Γmeas = (Γ +D)/π , (27)

and is associated to the force sensitivity

SF = 8πMkBTΓmeas . (28)

We emphasize that the fluctuation-dissipation theorem applies in the presence of frequency noise. Indeed if, using

Eq. (19), one introduces the susceptibility α(ωG) by the relation ⟨δz⟩ = (1/2)α(ωG)F exp(−iωGt)+ c.c. and derives

α(ωG) directly from Eq. (22), one finds that

Im α(ωG) = (πωG/kBT )P
fl(ωG) .

We compare the area (integral over the frequency ω > 0) sind of the δ-peak of P ind(ω) to the measured area sfl of

the spectral peak in the absence of modulation. We note that the area of the peak in P ind is given by |α(ωG)|2F 2/4,
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in agreement with Eq. (24). From Eqs. (24) and (26) we see that

sfl

sind
=

πΓmeasSF

F 2
. (29)

1.4 Measuring SF

Making contact with the experiment illustrated in Fig. 4 of the main text goes as follows:

• We express F and V AC
g in terms of their rms values: F =

√
2Frms, V AC

g =
√
2V AC

g,rms.

• sfl is the area of the thermal resonance in the Fourier spectrum of the current cross-correlation ⟨δI2⟩fl(f)

divided by the measurement resolution bandwidth rbw: sfl = 1
rbw

∫∞
0

⟨δI2⟩fl(f)df .

• The driven signal is a sharp peak superimposed on the thermal resonance. The area of the driven signal

associated to the sharp peak is sind = 1
rbw

∫∞
0

⟨δI2⟩ind(f)df . Because the driving force is modulated at a

frequency that is defined within the resolution bandwidth of our vector signal analyzer, all the power of this

force is contained within rbw. Defining (Ipeak)
2 as the height of the driven signal in the Fourier spectrum of

the current cross-correlation, we obtain sind = (Ipeak)
2.

Hence, Eq. (29) becomes:

SF =
2F 2

rms

πΓmeas
× sfl

sind
(30)

=
2F 2

rms

πΓmeas
×

1
rbw

∫∞
0

⟨δI2⟩fl(f)df
(Ipeak)2

, (31)

where Frms = C ′
gV

DC
g V AC

g,rms sin θ. Now, assuming that the thermal resonance has a Lorentzian lineshape, we can

also express Eq. (31) in a form that is directly applicable to the experiment shown in Fig. 4 of the main text:

SF =
thermal resonance height

driven peak height
×
(
C ′

gV
DC
g V AC

g,rms sin θ
)2 × 1

rbw
, (32)

where the heights refer to ⟨δI2⟩(f) spectra (not to SI(f) spectra). Equation (32) is valid whether fluctuations in

frequency are present or not.

• Equation (32) can be understood as follows. The force sensitivity can be simply determined from the applied
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force when the signal-to-noise ratio is one (SNR = 1). That is,

SF × rbw = F 2
rms when

thermal resonance height
driven peak height

= 1 .

• We verified that the output of the Fourier transform of the cross-correlation of our vector signal analyzer is

well calibrated both for an input signal with large bandwidth and for a delta peak. The former is necessary

to properly quantify the term "(thermal resonance height)/rbw" in Eq. (32) and the latter to quantify the

term "driven peak height". For this, we measured (i) the Johnson-Nyquist noise of the 2 kOhm resistor away

from any mechanical resonances, and (ii) the cross-correlation of a known signal V AC cos(2πf0t).

2 Device characteristics

2.1 Estimating the effective mass of mode 1 and mode 2

Because mode 1 and mode 2 are degenerate at low gate voltage (see Fig. 1c of the main text), we consider that both

modes have the same effective mass M . The effective mass of these modes is related to the mass of the nanotube

MNT as

M = MNT
1

L

∫ L

0

[ϕ(x)]2dx , (33)

where L is the length of the nanotube and ϕ(x) is the shape of the mode, which is normalized so that max[ϕ(x)] = 1.

Applying a voltage to the gate bends the nanotube towards the gate, and thus induces mechanical tension in it. As

a result, the shape of the fundamental mode can be approximated as ϕ(x) = sin(πx/L), hence M = MNT /2. We

estimate MNT from the size of the nanotube measured by atomic force microscopy. The distance between source

and drain electrodes is L = 4± 0.1 µm. The diameter of the nanotube is d = 2.1± 0.5 nm. From these values, we

estimate the effective mass of the two fundamental eigenmodes mode 1 and mode 2 to be

M =
1

2

(
2MC × πd× L

A

)
= 9.8× 10−21 ± 2.4× 10−21 kg , (34)

where MC is the mass of a carbon atom and A = 5.2× 10−20 m2 is the surface area of a hexagon in the honeycomb

lattice of graphene.
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2.2 Calculating C ′
g

We assume that the capacitance Cg between the nanotube and the gate is described by

Cg =
2πϵ0L

ln
(

4(h−z)
d

) , (35)

where ϵ0 is the vacuum permittivity, h = 2± 0.4 µm is the effective separation between the nanotube and the gate,

and d is the diameter of the nanotube. The derivative of Cg with respect to a displacement normal to the gate (z

direction) reads

C ′
g =

(
dCg

dz

)

z=0

=
Cg

h ln(4h/d)
. (36)

The capacitance Cg is estimated from the average gate bias spacing between two subsequent Coulomb blockade

peaks. As a result, we obtain

C ′
g = 1.2× 10−12 ± 0.4× 10−12 F/m. (37)

2.3 Detecting the thermal motion

Figure S1 displays a schematic of our measurement setup. Current fluctuations δI are converted into voltage

fluctuations across a resistor R = 2 kΩ. These voltage fluctuations are amplified by a two-stage amplification

scheme along two parallel lines. Each two-stage amplification scheme consists of a low-noise, high-impedance

voltage amplifier (LI-75A, NF Corporation) of gain 100 at the first stage, and a Stanford Research amplifier SR560

set to a gain of 50 at the second stage. We send the output of the SR560 amplifiers to a fast Fourier transform

signal analyzer (HP 89410A). The signal analyzer acquires data in time domain, and calculates the cross-correlation;

its output is the Fourier transform ⟨VAVB⟩ of this cross-correlation. The voltage noise VNA and VNB of the two

nanotube

INB

dI

RVg
DC

Vsd
AC

INA

VNA

VNB S

C

VAVB

A

B

Figure S1: Detailed schematic of the experimental setup. Elements added to Fig 2a of the main text: capacitance
C of the measuring lines, amplifier’s current noise INA,NB, amplifier’s voltage noise VNA,NB. The output signal of
the vector signal analyzer is SVAVB , the power spectral density of the cross-correlation of the output voltages of
amplifiers A and B. We convert SVAVB into SI using Eq. (38).
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amplifiers cancel out in the cross-correlation. The power spectral density of voltage fluctuations at the output of the

amplifiers is SVAVB = ⟨VAVB⟩/rbw, where rbw is the resolution bandwidth of the measurement. It can be expressed

as [1]

SVAVB =
[
Λ(f)× (SI + SIR + 2SINA,NB)R

2 + Soffset

]
× gain . (38)

Note that in the above expression, we define SI(f) =
∫ +∞
−∞ dτei2πfτ ⟨I(τ)I(0)⟩, so that SI(f) ≡ 2πPAC

I (2πf) in the

notations of Eq. (18). Here, SI is the power spectral density of the current fluctuations at the drain, SIR = 4kBT/R

is the Johnson-Nyquist noise of the resistor, SINA,NB is the amplifier current noise and Soffset is a voltage noise offset.

Λ(f) = 1
1+(2πfRC)2 is a frequency dependent attenuation factor, which accounts for the RC filtering of the lines inside

the cryostat. Fitting the background of SVAVB(f) to Eq. (38), we extract C = 1.6 nF and Soffset = 9×10−20 V2/Hz.

The voltage noise offset is comparable to Soffset = 10.8× 10−20 V2/Hz measured by Choi et al. [1] and is attributed

to residual crosstalk between the amplifiers. We use a total gain of 2.5 × 107, which accounts for an amplification

of 100× for each LI-75A and of 50× for each Stanford Research 560. The current noise of the LI-75A amplifier is

specified to be SINA,NB < 2×10−28 A2/Hz. Hence the current noise of the amplifier does not significantly contribute

to our output signal, as it corresponds to a voltage noise of 2SINA,NBR
2 = 1.6×10−21 V2/Hz (or a noise temperature

of 0.1 mK in combination with our 2kΩ resistor).

The power spectral density of electro-mechanical current fluctuations is given by

SI(f) =
⟨δI2⟩(f)

rbw
, (39)

where ⟨δI2⟩(f) is the Fourier transform of the cross-correlation of current fluctuations. We obtain

SI(f) = β2Sz(f) , (40)

where Sz(f) is the power spectral density of the projection along z of displacement fluctuations and β is defined as

β =
1

2

dG

dVg
V DC
g V AC

sd

C ′
g

Cg
. (41)

2.4 Estimating the angle θ

We can estimate the angle θ by assuming that modes 1 and 2 have the same thermal energy. According to the

equipartition theorem,

kBT = 4π2f2
1M

⟨
δr21
⟩
= 4π2f2

2M
⟨
δr22
⟩
, (42)
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Figure S2: Angle θ as a function of voltage applied to the gate V DC
g . The blue line shows the mean value of 19.5◦.

The dashed lines indicate the standard deviation of 2◦.

where f1,2 and
⟨
δr21,2

⟩
are the resonant frequencies and the variances of the displacement for the two modes. Since

our detection technique is only sensitive to the motional component along the z direction, we express
⟨
δr21
⟩

and
⟨
δr22
⟩

in terms of the variances of the projections of the displacements along z (see inset to Fig. 1c of the main

text):
⟨
δz21
⟩
=

⟨
δr21
⟩
sin2 θ ,

⟨
δz22
⟩
=

⟨
δr22
⟩
cos2 θ .

(43)

In addition,
⟨
δz21,2

⟩
are proportional to the variance of electro-mechanical current fluctuations at the drain (see

Eqs. (40) and (41)):
⟨
δz21,2

⟩
=

(
1

β

)2 ⟨
δI21,2

⟩
. (44)

Provided that mode 1 and mode 2 are measured with the same values of V AC
sd and V DC

g , we can use Eqs. (43) and

(44) to express Eq. (42) as
f2
01

sin2 θ

⟨
δI21
⟩
=

f2
02

cos2 θ

⟨
δI22
⟩
, (45)

where
⟨
δI21
⟩

and
⟨
δI22
⟩

are the variances of electro-mechanical current fluctuations measured for mode 1 and mode 2,

respectively. These variances can also be expressed in terms of the areas under the SI1 and SI2 spectra, where SI1,2
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Figure S3: Variance ⟨δr2⟩ (black squares) and transconductance dG/dVg (blue circles) as a function of V AC
sd for

mode 1 at 1.2 K. As explained in section 3, the variance reads ⟨δr2⟩ = 1
β2 cos2 θ

∫∞
0

SI(f)df . We measured SI

using the following parameters: fsd = 5.61 MHz (frequency of Vsd(t)), rbw = 9.375 Hz, V DC
g = −0.854 V,

and 56 dB attenuation. To calculate ⟨δr2⟩, we used θ = 19.5◦, nanotube-gate capacitance Cg = 1.8 × 10−17 F,
C ′

g = 1.2× 10−12 F/m, cable capacitance C = 1.6 nF (see section 2.3), and dG/dVg = 1.2 mS/V.

are the power spectral densities of current fluctuations for the two modes:

⟨
δI21,2

⟩
=

∫ ∞

0

SI1,2(f)df .

Hence Eq. (45) can be expressed as

tan θ =
f01
f02

√∫∞
0

SI1(f)df∫∞
0

SI2(f)df
. (46)

The SI spectra for mode 1 and mode 2, measured at 1.2 K and at various V DC
g values, allow us to extract θ using

Eq. (46). As shown in Fig. S2, θ = 19.5◦ ± 2◦ in the range of V DC
g values we used in the measurements.

2.5 Dependence of thermal resonances on V AC
sd

In this section, we demonstrate that the AC voltage we apply between source and drain to read out the electro-

mechanical current does not increase the temperature of the modes under study. In other words, we show that

the values of V AC
sd we use throughout our work does not affect the outcome of our experiment. Figure S3 shows

the displacement variance ⟨δr2⟩ for mode 1 along with the transconductance dG/dVg as a function of V AC
sd . The

transconductance is extracted from measurements of the DC source-drain current as a function of V AC
sd ; it is
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smoothed to ease readability. The dashed line corresponds to V AC
sd = 89 µV used in Fig. 2 of the main text.

Using a range of V AC
sd over which (1) the variance and (2) the transconductance are constant ensures that (1) the

temperature of the mode and (2) the electron temperature are unaffected by the measurement.

3 Variance of displacement as a function of temperature

To measure the variance of displacement as a function of temperature, we consider mode 2, whose thermal resonance

can be resolved up to at least 6 K. Using Eqs. (40) and (41), we derive the power spectral density Sr of the

displacement fluctuations δr:

Sr =
1

β2 cos2 θ
SI . (47)

The variance of δr reads

⟨δr2⟩ =
∫ ∞

0

Sr(f)df =
1

β2 cos2 θ

∫ ∞

0

SI(f)df . (48)

Figure S4 shows the standard deviation of the displacement δr =
√

⟨δr2⟩, the quality factor Q, and the conductance

G as a function of gate bias V DC
g at 1.2, 3 and 6 K. We measure SI using expression (38). The transconductance

dG
dVg

as a function of V DC
g is determined in a separate measurement. We found that dG

dVg
(V DC

g ) traces shift in V DC
g

by a fraction of mV from one measurement to the next. Even though these shifts are later corrected by comparing

dG
dVg

(V DC
g ) and SI(V

DC
g ) traces, the calculation of δr from Eq. (48) may still contain a spurious V DC

g dependence,

especially at 1.2 K where the transconductance strongly depends on V DC
g . Since δr should not depend on V DC

g

according to the equipartition theorem, we calculate the average of δr over the range of V DC
g shown in Fig. S4.

The result of this average, plotted as a function of temperature, is shown in Fig. S5. The temperature dependence

of the variance is consistent with the equipartition theorem 4π2f2
0M⟨δr2⟩ = kBT .

4 Non-thermal force noise

Improving the force sensitivity of carbon nanotube resonators towards the 1 zN/
√

Hz scale will require minimizing

non-thermal force noises which might become non-negligible. Non-thermal forces are different from the fluctuating

Langevin forces in that they are not related to the dissipation of the resonator (via the fluctuation-dissipation

theorem). Due to the strong electrostatic coupling of the nanotube to the gate, we consider two noise processes of

electrostatic origin.

One source of non-thermal force noise could be related to the Johnson-Nyquist noise of the electrical circuit.

The latter translates into an electrostatic force noise SJN = 4kBTR(C ′
gV

DC
g sin θ)2 = 0.2 zN/

√
Hz at 1.2 K where

13
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Figure S4: Standard deviation of the displacement δr =
√
⟨δr2⟩, quality factor Q, and conductance G as a function

of V DC
g . Each data point corresponds to a well-defined SI(f) spectrum, which could be properly fitted to a

Lorentzian function.

R is the 2 kΩ resistor. This force noise can be further reduced by lowering the temperature.

A second source of non-thermal force noise could be related to the single-electron charging-discharging process

in the Coulomb blockade regime. In this regime, electrons are strongly coupled to the motion of the nanotube [3, 4].

At a fixed V DC
g value, the nanotube experiences single-electron charging and discharging events whose statistic

is that of telegraph noise. Because the rates at which these events occur are much higher than the mechanical

frequency of the nanotube (see below), the resulting electrostatic force noise can be considered to be white, and its

power spectral density reads [5]

SFe = F 2
e × 4

WinWout

(Win +Wout)3
, (49)

where the telegraph force takes the values ±Fe = ±(e/2)V DC
g sin θ(C ′

g/Ctube), and Win,out are the rates for the
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Figure S5: Variance of the displacement of mode 2 as a function of temperature. The straight line is a fit to
kBT/(4π

2f2
0M) using f0 = 6.3 MHz and M = 9.8× 10−21 kg.

electron to jump on and off the nanotube, respectively. Here, Ctube is the capacitance of the nanotube dot; it is

related to the nanotube-gate capacitance as Ctube = Cg/αg, where αg = 0.2 is the lever arm between the nanotube

and the gate electrode.

SFe depends on the tunnel rate across the two barriers that define the nanotube quantum dot. We assume that

the left and right barriers have the same tunnel rate Wb. Since an electron can tunnel into or out of the nanotube

from both leads, we have

Win = 2Wb × f , Wout = 2Wb × (1− f) . (50)

Here f is the Fermi-Dirac distribution:

f(V DC
g ) =

(
1 + exp

(
αg|e|(V DC

g − V DC
g,peak)

kBT

))−1

, (51)

with V DC
g,peak the gate bias value corresponding to the Coulomb blockade peak in conductance. The maximum value

for SFe is obtained for V DC
g = V DC

g,peak, and reads:

max(SFe) = F 2
e

1

2Wb
. (52)

We estimate Wb from the peak value Gpeak of the conductance oscillations. According to Ref. [6], Wb =

2∆E ×Gpeak/e
2 in the limit kBT ≫ ∆E, where ∆E is the level spacing; while in the opposite limit (kBT ≪ ∆E),

Wb = 8kBT × Gpeak/e
2. The level spacing of the nanotube is ∆E = hvF /8L = 1.6 K with vF the Fermi velocity
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and L the dot length. Both this estimate and the temperature dependence of Gpeak (Fig. S4) indicate that the level

spacing ∆E of the nanotube is somewhat larger than kBT at 1.2 K, so that none of the above limits are reached. We

therefore make the rough approximation of averaging the two limits, leading to Wb ≃ 5kBT×Gpeak/e
2 ≃ 7×1010 Hz.

As a result, we estimate that SFe does not exceed ∼1 zN/
√
Hz.

This non-thermal force noise can be reduced by working in the Fabry-Perot regime.

5 Detecting nuclear spins with a nanotube resonator

The force sensitivity demonstrated with our nanotube resonator might enable the detection of single nuclear spins.

These spins would originate from atomic species attached to the nanotube. The coupling between the spins and the

motion of the nanotube would be provided by a strong magnetic field gradient Υ. In a Magnetic Resonance Force

Microscopy (MRFM) experiment, the signal-to-noise ratio (SNR) for magnetic moment detection reads

SNR =

√
NµΥ√
SF

(τ × tm)1/4 , (53)

where N is the number of atoms with magnetic moment µ, τ is the spin correlation time, and tm is the measurement

time. If our nanotube resonator can be integrated into the experimental setups described in Ref. [7, 8] without

degrading the force sensitivity achieved in the present work, it should be feasible to detect a single nuclear spin.

Indeed, using parameters obtained in Ref. [8] (Υ = 4.2 × 106 T/m, τ = 20 ms), we anticipate a SNR of 2 for the

spin of one hydrogen atom with a measurement time of 1 s.

In the experimental setups employed in Ref. [7, 8], the strong magnetic field gradient is produced by a microma-

chined permanent magnet. An experimental setup that should be compatible in a straightforward manner with the

fabrication process of our nanotube resonators was recently demonstrated by Nichol et al. [9, 10]. The core element

of this setup is a current-carrying wire microfabricated near the nanotube [11]. This wire serves several purposes:

• it produces a radio frequency magnetic field for spin manipulation;

• it also produces a strong, oscillating magnetic field gradient Υ(t): this renders the use of a micromachined

permanent magnet unnecessary, and enhances the spin signal by increasing the number of resonant spins.

Integrating our nanotube resonator into this setup may allow to detect the nuclear spins of 13C naturally present in

the nanotube. Detecting 13C nuclear spins would require fabricating the nanotube resonator within close proximity

to the current-carrying wire. To estimate the expected SNR, we proceed as follows. We consider the 4 µm long

nanotube used in this Letter, made of ∼ 1.2 × 106 carbon atoms. We also consider a layout where the current-
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carrying wire is parallel to the nanotube over a distance of 1 µm. Statistically, 1% of the carbon atoms in this 1 µm

long segment are 13C, yielding N ∼ 3 × 103 13C atoms whose nuclear spins can be manipulated. Considering a

nanotube-wire distance of 80 nm and a magnetic field gradient of Υ = 1.2× 105 T/m as in Ref. [9], we estimate a

force per 13C atom Fµ = µCΥ = 4.2× 10−22 N, where µC = 3.5× 10−27 J/T is the magnetic moment of 13C. Using

τ = 1 s as in Ref. [9] and tm = 1 s, we obtain SNR = 2.3. Such a SNR should enable the detection of the spin of

the 13C atoms of the nanotube.

To further optimize the SNR, it may be possible to reduce the distance between the nanotube and the current-

carrying wire using a DC voltage between the two. It may also be possible to apply a larger current across the

wire, provided that this does not result in heating. Eventually, a clear strategy to maximize the spin signal is to

fabricate resonators for which the nanotube was grown with 13C-enriched methane gas.

To minimize the electrostatic drive of the nanotube resonator with the radio frequency signal applied to the

current-carrying wire, the magnetic field gradient would be modulated a few kHz off the mechanical resonance

as in Ref. [9]. By inverting the spins at a few kHz, the force, which is the product of the gradient and the

magnetic moment of the spins, possesses a frequency component at the mechanical resonance. To further reduce

the electrostatic drive, the wire would be symmetrically biased as in Ref. [9]. The radio frequency signal applied to

the current-carrying wire may also broaden the Coulomb blockade peaks, thereby reducing the transconductance

and the force sensitivity. This effect is difficult to estimate and therefore needs to be tested experimentally.
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