
Supplementary Material for: Symmetry breaking in a mechanical

oscillator made from a carbon nanotube

Supplementary Figure S1. Measurements for a second nanotube resonator. This device

has the same geometrical layout as the one discussed in the main text. All measurements are

performed at 65 K. a, Current as a function of angular driving frequency ωdrive and static gate

voltage V dc
g measured with the FM technique. VFM = 1.1 mV. Color bar: 0 (white) to 20 pA

(dark red). b, Low-frequency current ILF versus ωdrive with V ac
g = 0.53 mV, static bias voltage

V dc
sd = 10 mV, and V dc

g = 2.1 V. c, X quadrature (IXvibra) and d, Y quadrature (IYvibra) of the current

measured with the 2-source mixing technique with V ac
g = 1.8 mV, V ac

sd = 0.6 mV, and V dc
g = 2.1 V.

A small shift of the resonance frequency occurred relative to the measurement in b.
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Supplementary Figure S2. Nanotube conductance as a function of static gate voltage.

a, Nanotube conductance at 65 K as a function of the constant gate voltage V dc
g applied to the gate

electrode. b, Nanotube conductance at 650 mK. The device is in the Coulomb blockade regime.

The spacing between consecutive conductance peaks is ∆Vg = eCg, where e is the electron charge

and Cg the capacitance of the nanotube with respect to the gate electrode.
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Supplementary Figure S3. Mechanical resonance at room temperature. Mechanical

vibration of the same nanotube device as in the main text measured at 250 K with the FM technique.

The resonance width ω0/2πQ can be conveniently read out from the separation between the two

minima that are flanking the main peak [4], with ω0 the angular resonance frequency and Q the

quality factor. We obtain Q ∼ 50. We used a static gate voltage V dc
g = −0.6 V and VFM = 5 mV.
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SUPPLEMENTARY NOTE 1: ADDITIONAL DEVICE

In this section, we present data from a second nanotube device. We verify with atomic force

microscopy that the trench width and depth are the same as for the device presented in the main

text (1.8µm and 350 nm, respectively). The roughness of the metal electrodes do not allow a

measurement of the nanotube diameter. We therefore use the same estimates for the capacitance

and the mass as for the first device (Cg = 12 aF, ∂zCg = 5.6 pF/m, ∂2
zCg = 21µF/m2, and

m ' 4 ag).

In the studied frequency range, we detect two mechanical resonances that change with an

applied gate voltage (supplementary Fig. S1a). In the following, we concentrate on the second

visible mode with a static gate voltage V dc
g = 2.1 V. We measure the low-frequency current ILF

and find a peak at the resonance frequency (supplementary Fig. S1b). In order to determine the

vibration amplitude zvibra, we also measure IXvibra and IYvibra with the 2-source mixing technique

(supplementary Fig. S1c and d). We obtain a vibrational amplitude zvibra = 8.9 nm for a driving

voltage of 1.8 mV. Unfortunately, the signal-to-noise ratio of the 2-source mixing technique was

not sufficient to measure zvibra directly for the lower driving voltage used to measure ILF. In

order to compare the two sets of data, we assume zvibra ∝ V ac
g , thus obtaining the scaled value

zvibra = 2.6 nm for V ac
g = 0.53 mV.

We perform the same analysis as for the main device to identify the origin of ILF. We estimate

the currents due to the nonlinearities in the capacitance and in the electrical conductance, finding

Icapa
LF = 4.8 pA and Icond

LF = 0.21 pA. Both values are far below the measured Imax
LF = 374 pA. In

addition to Cg, ∂zCg, and ∂2
zCg mentioned above, we use here V dc

sd = 10 mV, V ac
sd = 0.6 mV, and

∂2
Vg
G = 19µm/V2. For the analysis, we use an offset for V dc

g such that V dc
g = 0 when ω0 is lowest.

As for the vibration amplitude, we use a scaled value IYvibra = 30 pA to account for the difference

in the driving voltages.

We now consider symmetry breaking of the vibrations as the origin of the peak in ILF. Using

Eq. (19), we calculate β = 1.8 · 1025 m−1s−2. This value can be compared to the one we obtain

from the dependence of ω0 on V dc
g . From Eq. (S13), we get β = 5.2 · 1024 m−1s−2. For this device,

we have not studied the dependence of ω0 on V ac
g .

The fluctuation-induced spectral broadening δω, expected from the two values of β, leads to a

quality factor at room temperature that lies between 7.3 and 88 in the absence of cubic nonlinearity.
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While we have not measured the quality factor at room temperature with this device, we note that

such values are common for nanotube resonators.

SUPPLEMENTARY DISCUSSION

General expression for the low-frequency conductance

We consider the conductance of a suspended nanotube [42, 43] in the presence of a gate voltage

that has a large DC component and a small AC component at a frequency close to the frequency

of the eigenvibrations of the nanotube.

We assume that (i) the nanotube conductance is a function only of the total charge q of the

nanotube, (ii) the charge distribution along the nanotube is independent of the gate voltage Vg, and

(iii) the system is in the adiabatic limit, i.e. the vibration dynamics is much slower than the electron

dynamics. Then q is related to Vg by the capacitance Cg. We consider the effect on conductance of

the bending mode of the nanotube which is polarized in the direction z perpendicular to the gate.

Based on the above assumptions we write the conductance as

G(q(t)) ' G(q0) + ∂qGδq(t) +
1

2
∂2
qG[δq(t)]2 + . . . . (S1)

For the temperatures used in our experiments, where the Coulomb blockade effect is insignificant,

the term ∝ δq2 is comparatively small. Its effect is discussed in Methods (Estimation of ILF due

to conductance nonlinearity), and also below Eq. (S10).

The charge increment δq(t) is a function of the time-dependent (AC) increment of the gate

voltage δVg(t) and the (AC) vibrational displacement δz(t), which is the displacement of the

nanotube at the antinode of the vibrational mode with the largest amplitude, for a given mode.

For small |δVg| and |δz|

δq(t) ' ∂Vgq δVg(t) + ∂zq δz(t) +
1

2
∂2
Vg
q δVg(t)2 + ∂z∂Vgq δz(t) δVg(t) +

1

2
∂2
zq δz(t)

2 . (S2)

The coefficients in this expression have a simple form in the case where the charge q is related

to the gate voltage by the gate capacitance Cg, which itself depends on the displacement of the

nanotube. We then have

∂Vgq = Cg, ∂zq = V dc
g ∂zCg, ∂z∂Vgq = ∂zCg, ∂2

zq = V dc
g ∂2

zCg, (S3)

whereas we can set ∂2
Vg
q = 0, assuming the capacitor to be linear. In Eq. (S3) V dc

g is the DC gate

voltage, which is assumed to be large compared to δVg(t).
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We will consider an AC modulation δVg(t) at frequency ωdrive close to the eigenfrequency of

the nanotube ω0. If this modulation is not too weak, the major contribution to the AC displace-

ment δz is the one induced by this resonant modulation whereas the thermal displacement can be

disregarded.

The quantity of immediate interest to us is the quasi-static change of the conductance in response

to δVg. As explained in the main text, to detect this change we consider a periodic signal with

slowly modulated amplitude,

δVg(t) = V ac
g (t) cosωdrivet, V ac

g (t) = V0(1− cos(ωAMt)), ωAM � ωdrive. (S4)

There are several contributions to the low-frequency response of the conductance to the modulation

(S4). To study them we first estimate the response of the resonator to the modulation assuming

that the resonator dynamics is linear, δz = δzlin. The linearized equation of motion in the simplest

case of viscous friction reads

δz̈lin + 2Γδżlin + ω2
0δz

lin =
Fd(t) cos(ωdrivet)

m
, Fd(t) = ∂zCgV

dc
g V ac

g (t) (S5)

where m is the mass of the nanotube, 2Γ = ω0/Q is the decay rate of the oscillator with quality

factor Q, and Fd(t) is the AC driving force amplitude. In what follows we assume that the frequency

of the amplitude modulation, ωAM, is small compared to the decay rate Γ, so that the induced

vibrations adiabatically follow V ac
g (t). Then

δzlin(t) = Alin(ωdrive, t) cos(ωdrivet− φ), Alin(ωdrive, t) =
Fd(t)/m√(

ω2
0 − ω2

drive

)2
+ 4Γ2ω2

drive

,

φ = arctan

(
2Γωdrive

ω2
0 − ω2

drive

)
. (S6)

From Eqs.(S4), and (S6) it follows that all terms that have a quadratic dependence on δVg and

δz in Eq. (S2) have a slowly varying part, which oscillates with period 2π/ωAM. If the distance

between the gate electrode and the nanotube is h (it is of the order of the depth of the trench,

∼ 350 nm), then ∂zCg ∼ Cg/h. Then in the linear approximation the amplitude on resonance is

Ares = Fd/2mΓω0 ∼ CgV
ac

g V dc
g /mΓω0h. The slowly varying parts of the last two terms in Eq. (S2)

are

∼ CgV
ac

g Alin/h, CgV
dc

g (Alin)2/h2. (S7)

A simple estimate shows that, for the device parameters, the second term is much larger than the

first for resonant driving, which means that the term ∝ δVgδz in Eq. (S2) should be disregarded

in the analysis of the low-frequency conductance.
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Nonlinear response of the vibrational mode

In the linear approximation [Eq. (S6)], the term ∝ δz(t) in the expression for the charge and

thus the conduction modulation [Eq. (S2)] are oscillating at high frequencies ωdrive, ωdrive ± ωAM.

However, the vibrations of the nanotube are nonlinear, and this leads to the onset of slowly varying

terms in the displacement δz(t). To find these terms we write the part of the capacitive energy

and the internal energy of the mode that is nonlinear in δVg and δz,

Hnl
c = −1

2
∂zCgδV

2
g δz −

1

2
∂2
zCgV

dc
g δVgδz

2 +
1

3
mβδz3 +

1

4
mγδz4 + . . . . (S8)

The first two terms in this expression describe the nonlinear capacitive energy, whereas the last two

terms refer to the nonlinear part of the vibrational energy. We emphasize that the term which is

cubic in δz is present only because the mode lacks inversion symmetry: this term is the indication

of symmetry breaking (it corresponds to a force that is quadratic in δz). Such symmetry breaking

may result from the gate voltage which bends the nanotube. Therefore we expect that β depends

on V dc
g . On the other hand, the term ∝ γ is the familiar Duffing nonlinearity, which has been

known to play an important role in the vibrational dynamics of nanotubes [42, 43].

We emphasize again that δz refers to the maximal displacement for the considered mode in the

z-direction, i.e., toward the gate electrode. More generally, for bending modes, one should think

of the displacement δr as a function of length l along the nanotube (δr is locally transverse to

dl). Then, for example, the term that leads to (m/3)βδz3 in Eq. (S8) would be written as a triple

integral over the length

Hsym-brk =
1

3
mβ̃

∫
dl1dl2dl3fijk(l1, l2, l3)δriδrjδrk. (S9)

Function f here is nonzero only for a nanotube with broken symmetry, i.e., where the energy

changes if one replaces δr→ −δr. The term ∝ δz3 in Eq. (S8) is obtained if one substitutes δr(l)

with the solution of the harmonic problem, for the considered mode. In general, in nanotubes with

broken symmetry, the coupling between different modes leads to an energy that is cubic in the

displacements of the modes.

A simple calculation shows that, to leading order, the first 3 terms in Eq. (S8) give the slowly

varying terms in δz(t) of the form

δzslow(t) ≈ ∂zCg

V ac
g (t)2

4mω2
0

+ ∂2
zCg V

dc
g

V ac
g (t)Alin(ωdrive, t)

2mω2
0

cosφ− βA
lin(ωdrive, t)

2

2ω2
0

(S10)

Here, the first term is very much smaller than the second term for typical device parameters; the

ratio of these terms is of the same order of magnitude as the ratio of the terms in Eq. (S7). We
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note, however, that on exact resonance, ωdrive = ω0, we have cosφ = 0. Therefore either |δzslow|

displays an extremely narrow and extremely deep dip as a function of ωdrive, which is expected

for β → 0, or the dominating term in Eq. (S10) is the last term, which comes from the broken

inversion symmetry.

It is necessary also to look at the ratio of the contributions to the conductance modulation of

the second term in δzslow in Eq. (S10) and the term ∂2
zqδz

2 in Eq. (S2). One can easily see that

this ratio is ∼ Γ/ω0 = (2Q)−1 � 1. Therefore the leading-order contribution to the scaled slowly

varying conductance is

δG ≈ ∂qGV dc
g δz(t)2

(
1

2
∂2
zCg − ∂zCg

β

ω2
0

)
. (S11)

Here, bar means averaging over the period of fast oscillations 2π/ωdrive.

Experimentally, the easiest way to separate the two contributions to δG in Eq. (S11) is by

estimating ∂zCg, ∂2
zCg, and β from independent measurements. In Methods, we demonstrate how

this estimate is done for our device. The estimate indicates that the first term in the bracket in

Eq. (S11) is too small to account for our measurements. We also estimate β by analyzing the

shift of ω0 as a funtion of zvibra (the amplitude of δz(t)). We find that this latter estimate is in

good agreement with our measurement. Therefore, the major effect is coming from the symmetry

breaking of the vibrations. In the main text and in the following, we refer to the slow motion δzslow

in terms of a (quasi-static) shift of the equilibrium position, δzeq.

The dependence of the vibration frequency on DC gate voltage

Here, we show that the quadratic nonlinearity of the restoring force leads to a shift of the

nanoresonator frequency ∆ω0 due to a dc gate voltage. We start with equation of motion

mz̈ + 2mΓż +mω2
0z = −mβz2 −mγz3 +

1

2
∂zCg(V dc

g )2 +
1

2
∂2
zCg(V dc

g )2z, (S12)

where we assume that the displacement z is small. Taking z as the sum of a static contribution

and an oscillating contribution, we get in first order in (V dc
g )2

∆ω0 =
1

2mω0

[
∂zCg

β

ω2
0

− 1

2
∂2
zCg

]
(V dc

g )2. (S13)

The first term in the bracket, which depends on the symmetry breaking strength β, leads to the

increase of ω0 with V dc
g (β is usually positive). This is the behavior observed for a large majority

of nanotube resonators. By contrast, the second term leads to the decrease of ω0 with V dc
g . This

is observed occasionally and is attributed to nanotubes with a large built-in tension.
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Interestingly, the bracket of Eq. (S13) is the same as that of Eq. (S11) where the two terms

correspond to the low-frequency currents induced by symmetry breaking and by the nonlinear

capacitive coupling, respectively. In the resonator discussed in the main text, ω0 increases with

V dc
g . This further supports our finding that the peak in ILF is attributed to symmetry breaking.

We obtain from Fig. 4b in the main text that the prefactor a in the relation ∆ω0 = a(V dc
g )2

ranges from 4 · 107 to 8 · 107; we offset V dc
g so that V dc

g = 0 when ω0 is minimum. From the length

of the nanotube, we estimate that the effective mass is ' 4 ag. Neglecting the second term in

Eq. (S13), we obtain that β ' 3±1 ·1024 m−1s−2. This value is comparable to the values estimated

in the main text using different methods.

Fluctuation-induced spectral broadening

Thermally-induced spectral broadening can be understood from Eq. (S12) if one incorporates

into the right-hand side of this equation a random force fT(t) that describes thermal noise.

This noise comes from the same coupling to a thermal reservoir that leads to the friction force

∝ Γż. From the fluctuation-dissipation relation the noise is δ-correlated, with 〈fT(t)fT(t′)〉 =

4mΓkBTδ(t− t′).

To gain a qualitative insight into the broadening we assume that the resonator vibrates as

zvibra cos(ωt + φ) with frequency ω close to ω0. We now look at the overall displacement as

z(t) = zvibra cos(ωt + φ) + δz(t) and linearize Eq. (S12) with respect to δz(t). The left-hand-

side will have the same form as for z(t), i.e., it will describe a resonator with coordinate δz(t)

and eigenfrequency ω0. In the right-hand-side, however, the term −mγz3 will lead to the term

−3mγ[zvibra cos(ωt+ φ)]2δz(t). When averaged over the period 2π/ω, this term leads to the shift

of the vibration frequency for δz(t) of the form ω0 → ω0 + 3γz2
vibra/4ω0. This is the well-known

frequency shift of a nonlinear oscillator with vibration amplitude. A systematic treatment [41],

which does not use the linearization, shows that, if zvibra is the amplitude of eigenvibrations, to

the lowest order in z2
vibra the frequency shift is 3γz2

vibra/8ω0, cf. Eq. (20) in Methods.

We now note that the vibrations zvibra(cosωt+ φ) are in fact eigenvibrations induced by noise.

They have random phase φ and also random amplitude. The distribution of this amplitude is of

the Boltzmann form, ∝ exp(−mω2
0z

2
vibra/2kBT ) for weak resonator nonlinearity. The spread of the

vibration amplitudes leads to the effective spread of the vibration eigenfrequencies, with typical
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width

δω = 3γeffkBT/4mω
3
0; (S14)

we have replaced here γ with γeff to allow for the renormalization of γ by the quadratic-nonlinearity

term, see Eq. (21) in Methods.

Supplementary Fig. S3 shows the resonance line-shape measured at 250 K. From the mechanical

bandwidth, measured between the two minima that are flanking the main peak, the apparent

quality factor is ' 50. We change the driving force by a factor up to 4 and we do not observe a

variation of the bandwidth. Using β = 4.3 · 1024 m−1s−2 and Eq. (21), we get an apparent quality

factor of 67 from Eq. (S14).

The spread of the eigenfrequencies (S14) leads to a broadening of the resonator spectrum. We

emphasize that this broadening is not related to the vibration decay, it is a result of the interplay

of the resonator nonlinearity and fluctuations. Moreover, since the distribution of the squared

vibration amplitude, and thus of the vibration eigenfrequency, is exponential, the spectrum is

asymmetric. The overall spectrum in the presence of nonlinearity and fluctuations, on the one

hand, and decay, on the other hand, is determined by the ratio of δω and the decay-induced

broadening Γ. It can be obtained in an explicit form for an arbitrary δω/Γ [44]. The frequency

spread of the type (S14) can come also from the nonlinear coupling of the considered mode to

other modes of the resonator [44]. In the context of carbon nanotubes, this latter mechanism has

recently attracted significant attention [22].

Whereas the internal nonlinearity of the resonator leads to the change of the shape of the

spectrum with increasing temperature, this is not the case for the nonlinearity associated to the

quadratic dependence of the capacitance on the resonator displacement (second term in in Eq. (S8)).
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