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S.1. FABRICATION OF THE SUPERCONDUCTING STRUCTURE

We use a highly resistive silicon substrate (6 kΩcm) with a 295 nm thick, dry chlorinated

thermal oxide from NOVA wafers. The wafers are sputtered with 200 nm Nb, followed by

optical lithography and ion-milling to define the superconducting cavity, the feedline and

the graphene contacts. These process steps, and the subsequent wafer dicing, are carried

out by STAR cryoelectronics. We use Nb as a cavity material because of the high critical

temperature Tc = 9.2 K that allows the cavity to be tested at liquid helium temperature

and to sustain large pump fields. The fine structure of the device, shown in Fig. 1a of the

letter, consists of the cavity counter electrode and the support electrodes used later on to

anchor the graphene flake. The fabrication of this fine structure is carried out with electron-

beam lithography (EBL) and reactive-ion etching (RIE). In a first EBL/RIE step, the cavity

counter electrode is separated from the support electrodes. As a mask for etching, we use

50 nm aluminium (Al). The Al-mask is structured with EBL using PMMA and etched in

0.2% Tetra-Methyl-Ammonium-Hydroxide (TMAH) diluted in H2O. Unmasked areas are

cleaned from Al-residues with 30 s ion-milling in an argon (Ar) atmosphere. The Nb is

etched with RIE in a 10 mTorr SF6/Ar atmosphere with a radio frequency (RF) power of

100 W. In a second EBL/RIE step the cavity counter electrode is thinned down, such that

the height difference between the cavity counter electrode and the support electrodes equals

d.

Here we would like to comment as well on the gap between the two support electrodes,

which contact the graphene (Fig. 1a). On the one hand this gap allows measuring electrical

transport through the graphene, on the other hand it helps in preventing the collapse of the

graphene against the cavity counter electrode during critical point drying. The openings did

not show a significant influence on the mechanical behaviour in numeric simulations (private
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communication with Andreas Isacsson and Martin Eriksson).

S.2. CHARACTERIZATION OF THE ELECTRICAL SETUP AND THE

CAVITY

S.2.1. Calibration of loss and gain in the input and output lines of the cryostat

To relate the externally applied RF power and the measured RF power to the actual

fields at the sample, a careful calibration of the attenuation and gain in the setup is needed.

The RF-input lines are attenuated at different temperature stages in the cryostat to shield

the device from electromagnetic noise and to thermalize the lines. The attenuation is 10 dB

at T = 47 K, 20 dB at T = 4 K, 6 dB at T = 700 mK and 20 dB at T = 30 mK,

where we use for the last attenuation step a directional coupler to physically interrupt the

central part of the coaxial line [1]. The total loss in the lines is the sum of the contributions

from the attenuators and the loss in cables and connectors. In the input lines of the cold

cryostat we measure a total attenuation of loss(ωd) = 57 dB in the 10-100 MHz range and

loss(ωc) = 64 dB around ωc/2π = 6.7 GHz. The output of the cavity is shielded by two

QUINSTAR CTH0408KC circulators that are operated as isolators at 30 mK, and then

amplified by a low-noise amplifier LNF-LNC4 8A from Low Noise Factory at 4 K with gain

G(ωc) = 43 dB and noise temperature Tnoise ≈ 2 K measured by the factory at 10 K.

We measure a detection limit of SN,SA = −157 dBm/Hz in our spectrum analyzer (SA).

This noise floor is limited by the input noise of the amplifier. From kBTnoise(G−loss4K−SA) =

−157 dBm we can extract G − loss4K−SA = 38.5 dB and loss4K−SA = 4.5 dB. The total

measured gain of the output line is gain = G − loss4K−SA − losssample−4K ≈ 35 dB with

losssample−4K ≈ 3.5 dB which is reasonable considering the losses in the two circulators

and the line at the level of the sample. Hence we are able to resolve noise powers of

SN > −157 dBm/Hz−35 dB= −192 dBm/Hz in the transmission line of the sample. We

measure a total transmitted power of |S21|2 = −29.5 dB in device A and |S21|2 = −28.5 dB

in device B, from the output of the RF source to the input of the spectrum analyzer around

ωc. This values agree well with our calibration, |S21|2 = −loss+ gain = −29 dB.
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S.2.2. Analyzing the cavity lineshape

To characterize the external coupling and the internal loss of the cavity, we measure the

lineshape of the resonance of the cavity. The normalized transmission is given by [2]

S21(δωc) = 1− κext/κ

1 + 2iδωc/κ
. (S1)

with δωc the detuning from the cavity resonance frequency ωc, κ the total cavity decay rate

and κext the external coupling rate of the cavity to the feedline. At resonance (δωc = 0) the

transmission is

S21,min = −κext

κint

, (S2)

with κint the internal cavity decay due to cavity internal losses. By measuring the depth

and the width of the transmission dip, κ, κext and κint are extracted. In Fig. S1 we show the
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Figure S1. Transmission through the feedline around the cavity resonance frequency.

measured transmission spectrum of device A. For this plot we subtract the background of

the measurement containing contributions from the input and the output lines. From a fit

of the spectrum to Eq. (S1) we extract for V DC
g = −0.434 V the resonance frequency of the

cavity ωc/2π = 6.73 GHz and the external and internal decay rates κext = 2 MHz and κint =

13.2 MHz. By changing V DC
g to −6.434 V we observe a decrease in the resonance frequency

∆ωc/2π ≈ 2 MHz, which is equivalent to a change in cavity capacitance of ∆C ≈ 50 aF.

In addition, the internal decay rate of the cavity increases to κint = 14 MHz. The change

in resonance frequency can be well explained with an increased graphene-cavity capacitance

due to static displacement

∆Cm =

∫ 2π

0

dφ

∫ Rg

0

rdr
ε0

d− ξs(r)
− Cm0, (S3)
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where Cm0 is the capacitance of the graphene without static displacement at V DC
g ≈ 0 V

and ξs(r) = zs(V
DC

g ) · (r2/R2 − 1) (see S.4.2) the static mode shape of the pulled down

graphene with zs(V
DC

g ) the deflection of the center point of the membrane. If we calculate

the capacitive change using zs(V
DC

g ) = 15 nm for V DC
g ≈ 6 V (Fig. 4a, main text) we obtain

∆Cm = 49 aF. This value is in excellent agreement with the value of ∆C estimated from

the change in ωc.

S.2.3. Modeling the dissipation of the cavity

DCVg
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Cext
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(a) (b)

Figure S2. (a) Equivalent circuit of the measurement scheme. (b) Norton equivalent circuit where

all the contributions are converted into a parallel RLC circuit.

In Fig. S2a we show a detailed equivalent circuit of our measurement setup. In order to

model dissipation we included (i) an input and output impedance of Z0 = 50 Ω in the RF

source and the cryogenic amplifier, (ii) a resistor Rm for the loss in the graphene and the

DC connection and (iii) a resistor R for the internal loss in the cavity. By using a Norton

equivalent circuit [3] we can convert all contributions into a parallel equivalent RLC circuit

(Fig. S2b) with 1/Rtot = 1/Rext + 1/R + 1/R′m and Ctot = Cext + C + Cm. We obtain

1/Rext ≈ ω2C2
extZ0/2, IN = VpiωCext, 1/R′m ≈ ω2C2

gRm and we have made use of the fact

that in our circuit ωCextZ0 � 1 and ω2R2
mC

2
g � 1. The linewidth of the equivalent parallel

RLC-circuit is then given by

κ =
1

CtotRtot

=
1

CtotRext︸ ︷︷ ︸
κext

+
1

CtotR︸ ︷︷ ︸
κcavity

+
1

CtotR′m︸ ︷︷ ︸
κg

(S4)

By substituting the equivalent resistances we get

κext =
ω2
cC

2
extZ0

2Ctot
and κg =

ω2
cC

2
gRm

Ctot
.
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From the measured external linewidth we estimate the coupling capacitance using the above

expression to be

Cext =

√
2Ctotκext

ω2
cZ0

.

Using Ctot = 90 fF, κext/2π = 2 MHz, ωc = 6.7 GHz and Z0 = 50 Ω we get Cext = 5 fF in

good agreement with the simulated values of Cext = 4 fF for device A and Cext = 6 fF for

device B.

Furthermore, the measured increase of κ with V DC
g in Fig. S1 allows to estimate the

resistance Rm in device A. If we assume that the whole change of the linewidth is due to

the static displacement of the resonator (∆κ = ∆κg) we have

Rm =
∆κgCtot

ω2
c (C2

m − C2
m0)

.

Using ∆κ = ∆κg, ∆κg/2π = 0.8 MHz, Cm = 0.4 fF and Cm0 = 0.35 fF (from section S.2.2)

we obtain Rm ≈ 6 kΩ. Here, the change in the capacitance Cm is derived from the measured

change of the cavity resonance frequency ∆ωc. By inserting the value for Rm in equation

(S4) we obtain κcavity/2π = 10.8 MHz and κg/2π = 2.4 MHz with κint = κcavity + κg. The

high value of κint is therefore mainly attributed to the contamination and imperfections of

the cavities. Indeed, we have tested the cavity of devices A and B at T = 4.2 K before the

transfer of the graphene flakes, and we observed larger κint than what we usually observe in

devices processed in the same way.

S.3. COUPLING OF THE GRAPHENE RESONATOR TO THE

SUPERCONDUCTING CAVITY

S.3.1. Estimation of the coupling parameter g0

By applying a pump power Pp,in at frequency ωp at the feedline, we create a cavity photon

population of

np =
1

h̄ωp

Pp,in ·
2

κext

· κ2
ext

κ2 + 4(ωp − ωc)2
.

Here, κext/2 is the coupling of the input mode of the feedline to the cavity and κ2
ext/(κ

2 +

4(ωp − ωc)
2) is the lineshape of the cavity resonance. The photon population in the cavity

interacts by Stokes (-) and anti-Stokes (+) scattering with the mechanical resonator. The



6

scattering rates are given by

Γ± = 4npg
2
0

κ

κ2 + 4(ωp − ωc ± ωm)2
,

with g0 the single-photon coupling and ωm/2π the mechanical resonance frequency. In

the case of ωp − ωc = −ωm anti-Stokes scattering is resonantly enhanced and we have

Γopt ≈ 4npg
2
0/κ in the so-called resolved sideband limit where ωm � κ. Here we introduced

Γopt, the opto-mechanical coupling rate.

The anti-Stokes scattering leads to an equilibrium cavity population nc at ωc determined

by ncκ ≈ Γoptnm. Here, we assumed negligible thermal population of the superconducting

cavity (at 30 mK nc,th = 1/(exp h̄ωc/kBT − 1) � 1) and negligible direct population due

to the phase noise of the pump. The number of phonons nm is related to the zero-point

motion zzp by nm ≈ 〈z〉2 /2z2
zp, where 〈z〉 is the time averaged deflection of the effective mass

motion. The cavity mode leaks into the output mode of the feedline with a rate κext/2 and

results in the detectable output power Pout = nch̄ωcκext/2 or

Pout(ωc) = Pp,in ·
κ2

ext

κ2 + 4(ωp − ωc)2
·
(

1

κ

∂ωc

∂x

)2

· 2
〈
z2
〉
.

From the measured output power we can then estimate g0 as

g0 = zzp

√
Pout(ωc)

κ2

nph̄ωcκext 〈z2〉
. (S5)

To model the dependence of g0 = G0zzp on the voltage V DC
g between the graphene and

the cavity counter electrode, we have to account for the V DC
g dependence of both G0 and

zzp. To estimate G0(V DC
g ) we use the calculated value of the equilibrium position zs (Fig. 4a

of the letter) to substitute d by d = d0 − zs in the calculated graphene-cavity capacitance

Cm

G0(V DC
g ) =

ωc
2Ctot

∂Cm(V DC
g )

∂z
≈ ωc

2C

0.433πR2
g

[d0 − zs(V DC
g )]2

,

where d0 is the value of d at V DC
g = 0, Ctot is the total cavity capacitance approximated

by the cavity capacitance C and Rg is the radius of the cavity counter electrode. The

factor 0.433 is a correction due to the effective mass modeling (see section S.4.4). For the

calculation of the capacitance Cm see below the section about the effective mass modelling.

The increase of the zero-point motion is accounted for by calculating zzp as a function of
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V DC
g from the measurement of the resonance frequency ωm as a function of V DC

g in Fig. 3c,d

of the letter

zzp(V DC
g ) =

√
h̄

2meffωm(V DC
g )

.

S.3.2. Displacement sensitivity

The detection limit of our readout circuit SN = −192 dBm/Hz (see section S.2.1) imposes

a limit on the measurement imprecision
√
Sz,imp with

Sz,imp =
SNκ

2z2
zp

nph̄ωcκextg2
0

.

For the parameters in device A we get
√
Sz,imp = 2.55 pm/

√
Hz at np = 8000 and

√
Sz,imp =

230 fm/
√

Hz at np = 106. For comparison, the height of the resonance in the power spectral

density of the thermal motion at 1 K is (42 fm/
√

Hz)2 ((7 fm/
√

Hz)2 at 30 mK). We will

improve our displacement resolution (i) by reducing the loss in the cavity (up to a factor 8

improvement in
√
Sz,imp), (ii) by using a quantum limited amplifier [4] (up to a factor 10

improvement in
√
Sz,imp) and (iii) by increasing the coupling (with a factor 10 improvement

in
√
Sz,imp for g0/2π = 70 Hz).

S.4. MECHANICAL MODELLING

S.4.1. Circular graphene resonator in the membrane limit

We model the deflection ξ(t, x, y) of the graphene resonator as a thin plate subject to

large external stretching (membrane limit) [5]

ρ2D
∂2ξ

∂t2
= T∇2ξ + P (x, y), (S6)

with ρ2D the sheet mass density, P (x, y) the local pressure in z-direction and T a stretching

force per unit length at the edge of the membrane. If we consider radially symmetric modes

ξ(t, r), the stretching force T is related to a radial strain ε = (R′−R)/R with the elongated

radius R′ by

T = Ehε = Etngε, (S7)
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with the Young’s modulus of graphite E ≈ 1 TPa or the two dimensional graphene Young’s

modulus Et = 340 N/m [6], ng the number of graphene layers and t = 0.335 nm [7] the inter-

layer spacing in graphite. The total sheet mass density ρ2D = ηngρgraphene includes the mass

from the graphene layers, with the graphene mass density ρgraphene = 7.6 × 10−19 kg/µm2,

and a correction factor η ≥ 1 to account for additional adsorbents on the graphene.

The electrostatic pressure due to the gate voltage is modelled in a parallel plate approx-

imation with the capacitive energy given by U = 1
2
CmV

2
g . If we expand the capacitance in

terms of ξ we get

U ≈
∫
dxdy

ε0V
2

g

2

1

d− ξ(x, y)

≈
∫
dxdy

ε0V
2

g

2d

(
1 +

ξ(x, y)

d
+
ξ(x, y)2

d2
+
ξ(x, y)3

d3
+ . . .

)
∂U

∂z
≈
∫
dxdy

ε0V
2

g

2d2

(
1 +

2ξ(x, y)

d
+

3ξ(x, y)2

d2
+

4ξ(x, y)3

d3
+ . . .

)
≈
∫
dxdyP (x, y).

The differential equation for the deflection is then given by

ρ2D
∂2ξ

∂t2
= T∇2ξ −

ε0V
2

g

2d2

(
1 +

2ξ(x, y)

d
+

3ξ(x, y)2

d2
+

4ξ(x, y)3

d3
+ . . .

)
(S8)

To solve the equation, we decompose the deflection ξ(r, t) into a static displacement ξs(r)

and time-dependent (radial) modes k with amplitude ξk(r)

ξ(r, t) ≈ ξs(r) +
∑
k

ξk(r)e−iωt.

S.4.2. Static displacement as a function of DC voltage

For the static displacement we have

0 = T∇2ξs(r)−
ε0(V DC

g )2

2d2

(
1 +

2ξs(r)

d
+ . . .

)
by assuming 2ξs(r)/d� 1. The solution at lowest order in ξs(r)/d is given by

ξs(r) =
ε0(V DC

g )2

8Td2

(
r2 −R2

)
with the normalized center deflection

zs =
ε0R

2
g

8Td2
(V DC

g )2 = cs(V
DC

g )2. (S9)
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For device A, the approximation of small static deflections is well valid up to V DC
g ≈ 3.5 V

where zs = 5 nm and 2zs/d = 0.1 � 1. At large V DC
g we underestimate the static dis-

placement by not including higher order corrections of the electric force. On the other hand

we also underestimate the mechanical force when neglecting nonlinear effects as described

below. In device B zs ≈ 7.5 nm with 2zs/d = 0.1� 1, which corresponds to V DC
g ≈ 5 V.

The assumption of constant strain at moderate gate voltages is justified by analysing the

strain induced by the static deflection. At V DC
g ≈ 6 V the additional strain induced by the

static deflection of 10 nm (in device B) is given by εs = 2 · 10−5 � εinit, significantly smaller

than the initial strain.

S.4.3. Mechanical resonance frequency as a function of gate voltage

If we assume orthogonal modes and neglect mode coupling, we can project Eq. (S8) on

the fundamental mode

−ρ2Dω
2ξf(r) = T∇2ξf(r)−

ε0(V DC
g )2

d3
ξf(r) (S10)

and solve for the mode amplitude ξf(r). Considering a clamped boundary with ξf(R) = 0

we get

ξf(r) = ẑJ0

(
2.4

R
r

)
, (S11)

where ẑ = ξf(0) is the deflection amplitude at the center of the membrane and J0 is the 0th

Bessel function with J0(2.4) = 0. The resonance frequency as a function of gate voltage is

then given by

ωm(V DC
g ) =

√
2.42T

R2ρ2D

− ε0
d3ρ2D

(V DC
g )2. (S12)

By taking into account the reduced radius of the cavity counter electrode Rg with respect to

the membrane radius R, the electrical force gets reduced by a factor R2
g/R

2 and we obtain

ωm(V DC
g ) =

√
2.42T

R2ρ2D

−
R2
g

R2

ε0
d3ρ2D

(V DC
g )2 (S13)

for the resonance frequency as a function of V DC
g . At V DC

g = 0 V we get in agreement with

Ref. [8]

ωm(0) =
2.404

R

√
Ehε

ρ2D

.
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S.4.4. Harmonic oscillator model with effective mass

It is instructive and useful to analyze the dynamics of the resonator by a harmonic

oscillator model with an effective mass. From the total kinetic energy

Ekin =
1

2
ρ2D2π

∫
rξ2

f (r)dr =
1

2
meff ẑ

2 (S14)

we obtain for the effective mass

meff = 0.27ρ2DπR
2, (S15)

with

2π

∫ R

0

drJ0

(
2.4

R
r

)
r = 2π

R2

2.42

∫ 2.4

0

dr′J0(r′)r′ = 0.27πR2.

We multiply all the terms of Eq. (S8) by J0

(
2.4
R
r
)

and integrate over the area. As a result,

we get the normalized equation of motion with higher order corrections for the capacitive

force

meffω
2ẑ =

(
0.271πR22.42T − 0.271

ε0πR
2
gV

2
g

d3

)
ẑ (S16)

+0.196
3ε0πR

2
gV

2
g

2d4
ẑ2

+0.125
2ε0πR

2
gV

2
g

d5
ẑ3 + . . . .

Note that we obtain the same expression as Eq. S13 for the resonance frequency

ωm(V DC
g ) =

√
4.92Ehε

meff

− 0.271

meff

ε0πR2
g

d3
(V DC

g )2 =

√
2.42T

R2ρ2D

−
R2

g

R2

ε0
d3ρ2D

(V DC
g )2.

S.4.5. Induced motion over capacitive drive

First we are interested in the mechanical response under a weak electrostatic drive, such

that nonlinear motional effects can be neglected:

meff z̈(t) + γmmeff ż(t) +meffω
2
mz(t) = F̂d cos (ωdt). (S17)

The damping is characterized by the linewidth γm = ωm/Qm with Qm the quality factor of

the mechanical resonator and ωm the mechanical resonance frequency. The electrostatic drive

amplitude is given by F̂d = ∂zCmV
DC

g

√
2V AC

g , with V AC
g the root-mean-square amplitude
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of the drive voltage. Including the capacitive correction for the modeshape from above we

have F̂d = 0.433 · ε0πR2
g/d

2V DC
g

√
2V AC

g . With the ansatz z(t) = ẑeiωdt we get

−meffω
2
dẑ + iγmmeffωdẑ +meffω

2
mẑ = F̂d (S18)

and hence for the amplitude

ẑ(ωd) =
Fd/meff√

(ω2
m − ω2

d)2 + γ2
mω

2
d

. (S19)

When driving at resonance ωd = ωm, we have

ẑ(ωm) =
Fd

meffγmωd

. (S20)

S.4.6. Nonlinear lineshape

We include the cubic nonlinear force in the driven equation of motion

meff z̈(t) + iγmmeff ż(t) +meffω
2
mz(t) + αeffz

3(t) = F̂d cos (ωdt). (S21)

with αeff a constant.

In analogy to the linear lineshape in Eq.(S19) we get for the amplitude of the motion

ẑ(ωd) ≈ F̂d/2meffω
2
m√(

ωd−ωm

ωm
− 3

8
αeff

meffω2
m
ẑ2

0

)2

+ (2Q)−2

in the limit of small oscillations where αeff ẑ
3 < kẑ/Qm (see Ref. [9] Eq. 1.31a). The onset

of bistability is given by [9]

ẑcrit =

√
8

3
√

3

meffω2
m

Qαeff

= 1.24

√
meffω2

m

Qαeff

. (S22)

Thus the Duffing nonlinearity can be calculated from the critical deflection amplitude

αeff =
8

3
√

3

meffω
2
m

Qmẑ2
crit

. (S23)
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S.4.7. Harmonic oscillator with nonlinear contributions and static displacement

We consider quadratic and cubic nonlinear terms in the equation of motion (without

dissipation and drive)

meff z̈(t) = −meffω
2
mz(t)− β0z

2(t)− α0z
3(t) + Fel, (S24)

with β0 and α0 two constants. With the separation ansatz z(t) = zs + zf(t) we get

meff z̈f(t) = −
[
meffω

2
m,0zs + β0z

2
s + α0z

3
s −

1

2
∂zCm(zs)V

2
g

]
−
[
meffω

2
m,0 + 2β0zs + 3α0z

2
s −

1

2
∂2
zCm(zs)V

2
g

]
︸ ︷︷ ︸

ktot

zf(t)

−
[
β0 + 3α0zs −

1

4
∂3
zCm(zs)V

2
g

]
︸ ︷︷ ︸

βtot

z2
f (t)

−
[
α0 −

1

12
∂4
zCm(zs)V

2
g

]
︸ ︷︷ ︸

αtot

z3
f (t)

From the first bracket we can estimate the static displacement by neglecting the nonlinear

contributions and assuming a similar deflection profile as the fundamental oscillation

zs ≈
1

2meffω2
m,0

∂zCm(V DC
g )2

≈ 0.433

2meffω2
m,0

ε0πR
2
g

d2
(V DC

g )2

=
ε0R

2
g

7.21Td2
(V DC

g )2.

Compared to the result of the direct calculation with the static modeshape in Eq. (S9) there

is a small difference with a factor 7.21 instead of 8 in the denominator. For device B, it

is possible to analyze the nonlinear contribution in ktot. For zs = 17 nm the nonlinear

contribution equals the linear contribution as 3α0z
2
s = meffω

2
m = 1.6 kg·s−2 with α0 =

1.9× 1015 kg·s−2m−2.

For small nonlinear amplitudes we transform the quadratic and cubic nonlinear terms in
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a single cubic term [10]

αeff ≈ αtot −
10

9

β2
tot

meffω2
m

≈ α0 −
1

12
∂4
zCm(V DC

g )2 − 10

9meffω2
m

(
3αzs −

1

4
∂3
zCm(V DC

g )2

)2

≈ α0 −
1

12
∂4
zCm(V DC

g )2 − 10

144meffω2
m

∂3
zC

2
m(V DC

g )4 − 10

meffω2
m

α2
0z

2
s .

We assumed that ∂nzCm(zs) ≈ ∂nzCm(zs = 0) and that β is small (no symmetry breaking

visible at small V DC
g ). With α0 = 1.9 × 1015 kg s−2m−2 and Vg = 5 V, the second and

the third terms of the last equation are ≈ −6× 1012kg s−2m−2 and ≈ −6× 1011kg s−2m−2

respectively. This is much smaller than the fourth term (≈ −4× 1015kg s−2m−2). Hence we

can write

αeff ≈ α0 −
10

meffω2
m

α2
0z

2
s . (S25)

The measured values for the Duffing nonlinearities are within the range of αeff = 1.74 ·

1012 kg·m−2s−2 to 7.16 · 1017 kg·m−2s−2 observed in other graphene resonators [11, 12] and

are compatible with the observation of intermediate strain.

S.4.8. Heating of the mechanical resonator by large pump fields

device B
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Figure S3. Heating of the mechanical mode by increasing the pump field in device B.

In Fig. S3a we show a measurement of the quality factor in device B as a function of

the number of pump photons in the cavity. While the quality factor is roughly constant

for np < 6000, Qm decreases for higher pump fields. Upon increasing the temperature of

our cryostat Qm also decreases, as shown in Fig. S3b. From the comparison between the
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two figures we conclude that a pump power of np = 106 has the same influence on the

mechanical resonator as heating the cryostat to 200 mK. In order to minimize the heating

it is beneficial to reduce the resistance of the graphene and to improve the heat flow away

from the mechanical resonator.
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