
Supplemental Material

In the following, we provide details of the Casimir sensing scheme presented in the main text. In Sec. I, we
address the effect of quantum vacuum potentials on a quantum emitter and explain how the modified energy level
shifts and decay rates of a two level system close to a surface can be calculated. In Sec. II, we derive the effective
(linear) Casimir coupling Hamiltonian in the weak driving limit and in in Sec III, we provide a detailed description
of the optical read-out of the Casimir-potential induced level shifts and show how the motion of a membrane can be
monitored using coherent light. Throughout the Supplemental Material, we use ~ = 1.

I. CASIMIR-EFFECT FOR QUANTUM EMITTERS

The high sensitivity of the proposed sensing scheme is due to the large energy shifts that vacuum forces can induce
in a quantum emitter close to a dielectric surface. In the following, we explain how these level shifts can be calculated.
The general expressions for the ground and excited state shifts δωg and δωe of an effective isotropic two-level emitter
are given by [S1]
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where G(r, r, ωeg) is the classical (dyadic) electromagnetic Green’s function. As described in the main text, the ground-
state shift arises from excitation non-conserving terms in the atom-field interaction Hamiltonian involving the virtual
emission and re-absorption of a photon. This contribution is most easily evaluated by rotating the arising integral to
complex frequencies ω = iu. The excited-state shift contains one term (−δωg(r)) that arises from virtual emission
and re-absorption of off-resonant photons from the excited state, and an additional term coming from the emission
of a real photon (proportional to the Green’s function at the resonance frequency ωeg). Similarly, the spontaneous
emission rate of this real photon can be modified in the presence of a dielectric surface [S1],
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2Γ0πc
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Tr ImG(r, r, ωeg).

The Green’s function satisfies the equation[
(∇×∇×)− ω2
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]
G(r, r′, ω) = δ(r− r′)⊗ I.

We approximate the Green’s function of a suspended graphene mechanical resonator by that of an infinite graphene
sheet, as the latter has an exact solution. This approximation is well-justified given that the regime of interest is one
where the emitter sits at much closer distances d to the graphene than the lateral size of the sheet L, d� L.

To be specific, we consider an infinite interface between vacuum and a dielectric surface located at z = 0. The
Green’s function generally consists of an unimportant free term and a reflected component, the latter of which gives
rise to position dependence in the level shifts and decay rates. Physically, this term describes the interaction of the
emitter with its own field reflected from the surface. For distances z > 0 (on the vacuum side), the trace of this
reflected component is
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Here k‖ and k⊥ are the parallel and perpendicular wavevector components, with k⊥ =
√
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reflection coefficients for s and p-polarized waves in the case of graphene are given by rp = k⊥σ
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and depend on the conductivity σ [S2]. The conductivity of graphene [S3, S4] is given by
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Supplementary figure S.1: Band structure of doped graphene with Fermi level µ. Occupied electronic states are shown in red.
If the energy of an incoming photon ~ω exceeds 2µ, it can induce a transition from the lower band to the upper one.

where µ is the Fermi energy and γg is a phenomenological parameter characterizing intraband losses. For our
numerical simulations, we use ω0/γg = 103.

The conductivity of graphene has two physically distinct components. The first term on the right, proportional
to µ, corresponds to that of a free-electron gas (i.e., a Drude metal) and describes the response of carriers within a
single band of graphene. The second term (in brackets) describes the effect of optically-induced transitions between
the different bands of graphene. It consists of a real term (characterizing absorption) proportional to a step function,
which turns on for frequencies ω > 2µ, due to the availability of electron-hole transitions at these frequencies (see
Fig. S.1). The imaginary term describes dispersive effects associated with a step-function absorption profile, as
required by Kramers-Kronig relations.

In the regime ω . 2µ, interband effects can be neglected and graphene behaves like a Drude metal. In this case,
graphene supports guided surface plasmon modes, like any thin conducting film [S5]. The plasmonic wavelength-
frequency dispersion relation is given by λsp/λ0 = 2α(µ/ω), where α is the fine-structure constant and λ0 = 2πc/ω is
the free-space wavelength [S3]. An emitter within a distance d ≈ λsp of the surface experiences strong spontaneous
emission into the plasmon modes.

II. LINEARIZATION OF THE CASIMIR COUPLING HAMILTONIAN

In the following, we explain how the Casimir coupling Hamiltonian can be linearized in the the weak driving limit
and outline how the effective light-membrane interaction Hamiltonian (Eq. (3) in the main text) is obtained.

The dynamics of the membrane and the emitter is governed by

ρ̇ = −i[H, ρ] + ΓDσ−(ρ),
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∆
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and leads to modified mechanical and emitter properties such as a 〈σz〉-dependent displacement of the steady state
value of the mechanical position 〈xM〉∞ and a renormalized detuning ∆ → ∆ + g〈xM〉∞ . The differential equation
above can be decomposed into an entangling part given by the coupling Hamiltonian Hint = gxMσz, which creates
correlations between the emitter and the light field, and a separable part

L0(ρ) = −i
[
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]
+ ΓDσ−(ρ).

We consider the case Γ� g, where the two level system reaches its steady state on a time scale which is fast compared
to the timescale on which the exchange of information between the emitter and the membrane take place. The steady
state of L0(ρ),
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with

〈σz〉∞ = −1 +
ε

2
+O(ε2),

is a pure state in the weak driving limit, i.e. up to O(ε), where ε = Ω2

∆2+(Γ/2)2 . This allows us to introduce a unitary

transformation R, which rotates the ground state of the emitter into the steady state of L0, R†|g〉〈g|R = ρ0. We
are interested in deviations of relevant observables from their steady state mean value and describe the interaction
between the emitter and the membrane therefore in a rotated and displaced picture where
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)
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Since the emitter explores only a small region on the surface of the Bloch sphere around ρ0, this region can be
approximated by a plane and the two level system can be treated as harmonic oscillator with quadratures
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,

such that
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√
εxMxE, (S.2)

to first order in ε, where
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. (S.3)

The emitter interacts with the membrane through Eq. (S.2) and with the light-field via the standard optical Bloch
equations. For ε � 1, the emitter can be adiabatically eliminated, which yields an effective interaction between the
membrane and the light field

HML = κxMpL, (S.4)

where κ = ḡ
√
εΓdet/Γ and pL is the light field quadrature, which couples to xE (see Sec. III). A detailed derivation

of the corresponding equations of motion is provided in Sec. III A. Eq. (S.4) describes the mapping of displacements
of the membrane xM to phase shifts on the scattered light field that are described by the quadratures xL and pL (see
below). These phase shift can be very efficiently measured against a reference beam using homodyne detection [S6].

III. READ-OUT SCHEME

This section is devoted to the read-out of the Casimir potential induced level shifts using coherent light fields. In
Sec. III A, the effective emitter-mediated time evolution of the membrane and the light field is derived and in Sec. III B
we explain how the conditional variance of the membrane can be calculated if the scattered light field is measured
by homodyne detection. Throughout this part of the Supplemental Material, we will use dimensionless mechanical
quadratures xm = xM

√
ωMm, pm = pM

√
1/(ωMm) (as above, we use ~ = 1). With this notation, the Casimir

coupling Hamiltonian derived in Sec. II is given by

Hint = ḡm

√
ε xExm, ḡm = ḡ (mωM)−

1
2 . (S.5)

A. Time evolution of the emitter, the membrane and the light field

In this section, we derive the input-output relations for the light field and the membrane in the weak driving limit
by adiabatically eliminating the emitter.
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1. Light-emitter interaction and adiabatic elimination of the excited state

In the following, we consider the evolution of the light field and the emitter. As explained above, the properties of
the emitter are read out by applying a laser beam and detecting the phase shift that has been acquired by the light
field. The phase shift on the light field are here described in terms of the light field quadratures xL and pL. They
describe the in-phase and out-of-phase component of the light with respect to some reference laser field [S6]. The
former corresponds to the sine component (with a phase difference of φ = 0 with respect to the reference beam) of
the electromagnetic field. The latter corresponds to the cosine component (with a phase difference of φ = π/2).
We use here spatially localized light modes xL(t), pL(t) with commutation relations [xL(t), pL(t′)] = iδ(t − t′). The
light mode corresponding to xL(t), pL(t) interacts with the emitter at time t through the dipole interaction, resulting
in the transformation (

xout
L (t)
pout

L (t)

)
=

(
xin

L (t)
pin

L (t)

)
+
√

Γdet

(
−pE(t)
xE(t)

)
, (S.6)

where the superscripts ”in” and ”out” label the variables before and after the interaction. The emitter is subject to
three different types of interactions. It couples to the light field and interacts with the membrane through the Casimir
potential, as described by Eq. (S.5). Moreover, the emitter can scatter light into channels which are not measured.
The latter is taken into account by introducing noise modes xN(t), pN(t) with [xN(t), pN(t′)] = iδ(t− t′) such that(

ẋE(t)
ṗE(t)

)
=
√
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(
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L (t)
xin

L (t)

)
+
√
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(
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N (t)
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N (t)

)
− ḡm

√
ε

(
0
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)
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2

(
xE(t)
pE(t)

)
,

where Γ = Γdet +ΓN. In the weak driving limit, where ε = Ω2

∆2+ Γ2

4

� 1, the population of the excited state is negligible

and the emitter can be adiabatically eliminated. For ε� 1 and ωM � Γ,(
xE(t)
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)
=

2
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Γ

(
−pin

L (t)
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)
+

2
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(
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)
− 2ḡm

√
ε

Γ

(
0

xm(t)

)
. (S.7)

By inserting this expression into the evolution equation for the membrane and the light field, effective input-output
relations for the mechanical and the photonic system can be obtained, which do not include the emitter any more.

2. Effective time evolution of the membrane and the light field

The membrane evolves under the Hamiltonian Hmembrane = ωM

2 (x2
m +p2

m) + ḡm
√
εxExm and is subject to mechanical

damping. We consider here two different damping models and analyze the case of symmetric damping when position
and momentum are damped with equal rates γx = γp = γ/2, and pure momentum damping γx = 0, γp = γ. In the
case of symmetric damping, the time evolution of the membrane is given by(

ẋm(t)
ṗm(t)

)
sym

=

(
−γ2 ωM

−ωM −γ2

)(
xm(t)
pm(t)

)
+
√
γ

(
f in
x,sym(t)
f in
p,sym(t)

)
− ḡm

√
ε

(
0

xE(t)

)
, (S.8)

where γ is the mechanical decay rate and f in
x,sym, f in

p,sym are the associated Langevin noise operators with

[f in
x,sym(t), f in

p,sym(t′)] = iδ(t − t′). The noise correlation functions are given by 〈f in
x,sym(t)f in

x,sym(t′)〉 =

〈f in
p,sym(t)f in

p,sym(t′)〉 = δ(t−t′)(2nth+1), where nth is the thermal occupation number and is given by nth = kBTbath/ωm.
kB is the Boltzmann constant and Tbath is the temperature of the bath of the membrane.

In the following, we derive the effective evolution for pure momentum damping. The symmetric case can be
treated in an analogous fashion. Physically, many known damping mechanisms lead to momentum- rather than
position damping. However, the quantized description of pure momentum damping is a complicated problem which
is for example addressed in the Caldeira-Leggett model [S7, S8] and involves non-Markovian noise operators. We
use here a simplified Markovian model, which can be understood as the quantum analogue of classical Brownian
motion [S9, S10]. A direct Markovian quantum analogue of the equations describing classical Brownian motion does
in general not preserve the positivity of the density matrix describing the quantum state [S11]. This can be corrected
by adding an appropriate noise term in the evolution of xM(t) [S12, S13]. The corresponding quantum Langevin
equations for the mechanical quadratures are given by(

ẋm(t)
ṗm(t)

)
=

(
0 ωM

−ωM −γ

)(
xm(t)
pm(t)

)
+
√
γ

(
f in
x (t)
f in
p (t)

)
− ḡm

√
ε

(
0

xE(t)

)
,
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with [f in
x (t), f in

p (t′)] = iδ(t − t′) and noise correlation functions 〈f in
x (t)f in

x (t′)〉 = δ(t − t′)(2nth + 1)−1,

〈f in
p (t)f in

p (t′)〉 = δ(t− t′)(2nth + 1) [S12, S13].

We consider now the time evolution of the membrane in the interaction picture with respect to the free mechanical
Hamiltonian HM = ωM

2 (x2
m + p2

m), i.e. in a co-rotating frame. The corresponding transformed mechanical variables
are given by (

x̃m(t)
p̃m(t)

)
=

(
cos(ωMt)−sin(ωMt)
sin(ωMt) cos(ωMt)

)(
xm(t)
pm(t)

)
(S.9)

and evolve according to(
˙̃xm(t)
˙̃pm(t)

)
= γR

(
x̃m(t)
p̃m(t)

)
+
√
γ

(
cos(ωMt)f

in
x (t)− sin(ωMt)f

in
p (t)

sin(ωMt)f
in
x (t) + cos(ωMt)f

in
p (t)

)
(S.10)

+
2ḡM

√
εΓdet

Γ

(
− sin(ωMt)
cos(ωMt)

)
pin

L (t) +
2ḡM

√
εΓN

Γ

(
− sin(ωMt)
cos(ωMt)

)
pin

N (t),

where

γR = γ

(
− sin2(ωmt) cos(ωmt) sin(ωmt)

cos(ωmt) sin(ωmt) − cos2(ωmt)

)
.

The equations for the evolution of the light field quadratures read(
xout

L (t)
pout

L (t)

)
=

2ḡm

√
εΓdet

Γ

(
cos(ωMt)x̃m(t)+sin(ωMt)p̃m(t)

0

)
+

(
1− 2Γdet

Γ

)(
xin

L (t)
pin

L (t)

)
− 2
√

ΓdetΓN

Γ

(
xin

N (t)
pin

N (t)

)
,(S.11)

where Eq. (S.6), Eq. (S.7) and Eq. (S.9) have been used. The time evolution equations for the mechanical and
light-field variables Eq. (S.10) and Eq. (S.11) correspond to an effective interaction between the membrane and light,
HML = κxMpL(t) with effective coupling rate κ = 2ḡ

√
εΓdet/Γ.

B. Calculation of the conditional variance

Eq. (S.11) shows that the mechanical position is mapped to the x-quadrature of the light field and can accordingly
be read-out by monitoring xL. As discussed in the following, continuous measurements of xL lead to a reduced
conditional variance of the position of the membrane.
The term conditional variance refers to the variance that is obtained if the measurement results are known. The term
unconditional variance describes the case where the light field is not measured or if the measurement results are not
taken into account. In the setting considered here, the conditional variance of the atomic position Vx can be reduced
below x2

ZPM, while the unconditional state does not exhibit squeezing. This is due to the fact that the measurements on
the light field yield probabilistic outcomes which result in random displacements of the mechanical state in phase space.

In the following, we explain how the conditional variance can be calculated [S14]. For convenience, we discretize
time using infinitesimally short time intervals of duration τ � ω−1

M , κ−2, (γ · nth)−1 and discretized light modes
xinL,n =

√
τxinL (nτ), pinL,n =

√
τpinL (nτ).

The light-membrane interaction discussed above leads to an entangled state between the membrane and the light.
As outlined above, measurement on the latter allow one to infer information of the former such that a squeezed state
is generated. More specifically, for each time step, a light mode in vacuum |0〉n couples to the membrane in state
|ΨM(nτ)〉 through the interaction Hamiltonian HML. The subsequent measurement yields outcome on with probabil-
ity pn. In this case, we obtain the conditional state of the membrane |ΨM([n+1]τ)〉 = 1√

pn n
〈on|e−iHMLτ |0〉n|ΨM (nτ)〉

and the corresponding unconditional state is given by ρ([n+ 1]τ) =
∑
nMnρ(nτ)M†n, where Mn =n〈on|e−iHMLτ |0〉n.

This process can be conveniently described in terms of covariance matrices using the Gaussian formalism [S15, S16].
The covariance matrix of a continuous variable system with m modes that are each described by the quadratures x
and p is given by Γij = 〈{〈Ri − 〈Ri〉, Rj − 〈Rj〉〉}+〉, where {·, ·} is the anticommutator and R = (x1, p1, ...xm, pm)T .
The covariance matrix of a thermal state is for example given by Γth = (2nth + 1) · 11. Unitary time evolutions
R(t) = S(t)Rin can be parametrized by a time evolution matrix S such that Γ(t) = S(t)ΓinS(t)T . Using this
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notation, the time evolution of the membrane and the light field given by Eq. (S.11) and Eq. (S.10) can be cast in
the form Γ([n + 1]τ) = S(nτ)Γ(nτ)ST (nτ). Γ([n + 1]τ) is here a 8 × 8 square matrix corresponding to R(nτ) =
(xm(nτ), pm(nτ), xL,n, pL,n, xN,n, pN,n, fx,n, fp,n)T . The update of the mechanical state through the measurement of
the light [S15] can be calculated by considering the 4×4 block of this matrix ΓML that corresponds to the mechanical
and photonic modes

ΓML =

(
ΓM Γcoh

ΓTcoh ΓL

)
,

and using the formula

Γ′M = ΓM − Γcoh(ΓL + γ̃L)−1ΓTcoh. (S.12)

Γ′M is the updated 2× 2 matrix, which describes the conditional mechanical state after the measurement, and

γ̃L =

(
r−1 0
0 r

)
is the covariance matrix of the state onto which the photonic mode is projected. A perfect measurement of
xLcorresponds to r →∞.

For example, if the initial state of the mechanical system is a thermal state and the dynamics is solely governed by
the interaction Hamiltonian HML (which is the case in the short time limit for perfect detection), Eq. (S.12) yields
directly

V̇x(t) = −κ2V 2
x (t), V̇p(t) = κ2,

such that

Vx(t) =
1

(V inx )−1 + κ2t
, Vp(t) = V in

p + κ2t.

This underlying mechanism which leads to a squeezing in the mechanical x-quadrature and an antisqueezing in pm is
complicated by the effects of imperfect detection, the coupling to a thermal bath and the rotation in phase space [S17].
We consider here the measurement process in the rotating frame, since the co-rotating variables x̃m and p̃m are the
relevant observables that can be accessed typically. Since the interaction Hamiltonian facilitates a mapping of xm

onto xL, x̃m and p̃m are mapped and squeezed alternatingly at a frequency ωM, which gives rise to the oscillations in
Fig. 4b in the main text. In the non-rotating frame, the conditional variance of xm decreases quickly during a short
time interval and reaches then a stationary value with constant squeezing.
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