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I. GENERAL EXPRESSION FOR THE POWER
SPECTRUM

The explicit expression for the driving-induced term in
the power spectrum of fluctuations of the oscillator reads

ΦF (ω) =
1

2
Re

∫ ∞

0

dtei(ω−ωF )t

∫∫ 0

−∞
dτdτ ′eiωF (τ ′−τ)

× ⟨χ1(t, t+ τ) [χ1(0, τ
′)− ⟨χ1(0, τ

′)⟩]⟩+Φ
(2)
F (ω). (S1)

This expression follows from Eqs. (1) and (2) of the main
text. The first term gives the contribution of the fluctu-
ations of the linear susceptibility. The second term gives
the contribution from the nonlinear susceptibility,

Φ
(2)
F (ω) = Re

∫ ∞

0

dteiωt

∫∫ 0

−∞
dτdτ ′ cos[ωF (τ − τ ′)]

× [⟨χ2(t, t+ τ, t+ τ ′)q0(0)⟩+ ⟨q0(t)χ2(0, τ, τ
′)⟩] . (S2)

This term describes the correlation between fluctuations
of the second-order susceptibility and thermal fluctua-
tions in the absence of periodic driving. We emphasize
that, for a resonantly modulated underdamped oscillator,
it is pronounced at frequencies ω close to the driving fre-
quency ωF , not 2ωF . Equation (S2) describes, in particu-
lar, the contribution to the spectrum from the nonlinear

susceptibility of a nonlinear oscillator. It is especially
convenient in the case of weak nonlinearity, where the
oscillator spectrum Φ0(ω) is broadened primarily by the
decay rather than by frequency fluctuations due to the
interplay of the nonlinearity and the amplitude fluctua-

tions. In this case the term Φ
(2)
F gives the main contribu-

tion to ΦF . The theory of a nonlinear oscillator will be
discussed in a separate publication.

II. AVERAGING OVER FREQUENCY
FLUCTUATIONS FOR A LINEAR OSCILLATOR

Equation (3) of the main text for the susceptibility of a
linear underdamped oscillator with fluctuating frequency
can be found in a standard way by changing from the
fast oscillating variables q, q̇ to slow complex oscillator
amplitude u(t) = [q(t) + (iωF )

−1q̇(t)] exp(−iωF t)/2. If
the equation of motion in the lab frame is Markovian,
q̈+2Γq̇+ [ω2

0 +2ω0ξ(t))]q = F cosωF t+ f(t), where f(t)
is the dissipation-related thermal noise, as in the example
discussed in the main text, the equation for u(t) in the
rotating wave approximation reads

u̇ = −[Γ + iδωF − iξ(t)]u− i
F

4ω0
+ fu(t). (S3)

Here, δωF = ωF − ω0 is the detuning of the driving
frequency from the oscillator eigenfrequency; fu(t) =
[f(t)/2iω0] exp(−iω0t). Equation (S3) applies on the
time scale that largely exceeds ω−1

0 . On this scale fu(t) is
δ-correlated even where in the lab frame the oscillator dy-
namics is non-Markovian, cf [1]. Solving the linear equa-
tion (S3), one immediately obtains Eq. (3) of the main
text for the oscillator susceptibility χ1(t, t

′). We disre-
gard corrections ∼ |δωF |/ωF ; in particular in Eq. (S3)
for convenience we replaced F/ωF with F/ω0; similarly,
in the expression for fu we replaced f/ωF with f/ω0.

We note that the noise fu(t) drops out from the mo-
ments ⟨un(t)⟩ [2]. This can be used to characterize the
statistics of the frequency noise. In this paper we consider
the change of the conventionally measured characteristic,
the power spectrum, and the extra spectral features re-
lated to the interplay of the driving and frequency noise.

It is convenient to rewrite Eq. (S1) for the spectrum
ΦF (ω) near its maximum in the form that explicitly takes
into account that, when the expression for the suscep-
tibility is substituted into Eq. (S1), the fast-oscillating
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terms in the integrands can be disregarded. This gives

ΦF (ω) = (8ω2
0)

−1Re

∫ ∞

0

dt exp[i(ω − ωF )t]

×
∫ t

−∞
dt′

∫ 0

−∞
dt′1

⟨
χsl(t, t

′)[χ∗
sl(0, t

′
1)− ⟨χ∗

sl(0, t
′
1)⟩]

⟩
,

χsl(t, t
′) = e−(Γ−iδωF )(t−t′) exp

[
−i

∫ t

t′
dt′′ξ(t′′)

]
. (S4)

Here, function χsl(t, t
′) gives the slowly varying factor in

the fast-oscillating time-dependent oscillator susceptibil-
ity χ1(t, t

′). Function ⟨χsl(0, t)⟩ ≡ ⟨χsl(−t, 0)⟩ gives the
standard (average) susceptibility

χ(ωF ) =

∫ ∞

0

dteiωF t⟨χ1(t, 0)⟩ =
i

2ω0

∫ ∞

0

dt⟨χsl(t, 0)⟩.

(S5)

The mean forced displacement of the oscillator in the
linear response theory is ⟨q(t)⟩ = 1

2Fe−iωF tχ(ωF ) + c.c..

A. Noise averaging for fast, slow, and Gaussian
noise

Averaging over ξ(t) in Eqs. (S4) and (S5) can be done
using the noise characteristic functional (cf. [3]),

P[k(t)] =

⟨
exp

[
i

∫
dt k(t)ξ(t)

]⟩
.

As seen from Eq. (S4), function ⟨χsl(t, t
′)⟩ is deter-

mined by P[k(t′′)] with k(t′′) = −1 if t′ < t′′ < t
and k(t) = 0 otherwise. For δ-correlated noise, where
P[k(t)] = exp[−

∫
dt µ(k(t))], taking into account that

µ(0) = (dµ/dk)k=0 = 0 and µ(−k) = µ∗(k), we obtain

⟨χsl(t, t
′)⟩ = exp

[
− (Γ− iδωF + µ∗(1)]) (t− t′)

]
,

χ(ωF ) = (i/2ω0)
[
Γ̃− i(ωF − ω̃0)

]−1

(S6)

with Γ̃ = Γ + Reµ(1) and ω̃0 = ω0 − Imµ(1). Thus,
frequency noise leads to the broadening of the conven-
tional susceptibility Reµ(1) and the effective shift of the
oscillator eigenfrequency by −Imµ(1). We note that
the noise can be considered δ-correlated when its spec-
trum is flat not just on the scale & Γ, but on the scale
& Γ + Re µ(1), which itself depends on the noise inten-
sity. At the same time, the noise spectrum is assumed to
be much narrower than ω0. As seen from Eq. (S4) the
noise components oscillating at frequencies much higher
than Γ+Reµ(1), |δωF | are averaged out; frequency noise
with frequencies ∼ ω0 was disregarded in Eq. (S3). When
writing Eq. (S3) we also assumed that noise at frequen-
cies close to 2ω0 ≈ 2ωF is very weak and can be disre-
garded. If this were not the case, one would have to take
into account the effects of nonlinear friction that come
from the coupling to the source of the noise, cf. [1].

Averaging the term ⟨χsl(t, t
′)χ∗

sl(0, t
′
1)⟩ in Eq. (S4)

comes to calculating⟨
exp

[
−i

∫ t

t′
dt′′ξ(t′′) + i

∫ 0

t′1

dt′′1ξ(t
′′
1)

]⟩

≡
⟨
exp

[
i

∫ ∞

−∞
dt2k(t2)ξ(t2)

]⟩
. (S7)

Here t > 0 and −∞ < t′ ≤ t,−∞ < t′1 ≤ 0. Clearly, in
this equation k(t2) = 0,±1. For t′ < 0 we have k(t2) =
sgn(t′ − t′1) if min(t′, t′1) < t2 < max(t1, t

′
1) and k(t2) =

−1 if 0 < t2 < t; for t′ > 0 we have k(t2) = 1, if t′1 < t2 <
0 and k(t2) = −1, if t′ < t2 < t; otherwise k(t2) = 0. For
a δ-correlated noise the averaging using the explicit form
of P[k(t)] and integration over t′, t′1, t gives Eq. (5) of the
main text.

For a stationary Gaussian noise the characteristic func-
tional is expressed in terms of the noise correlator [3],

P[k(t)] = exp

[
−1

2

∫
dt dt′ ⟨ξ(t)ξ(t′)⟩k(t)k(t′)

]
.

If the correlator ⟨ξ(t)ξ(t′)⟩ or equivalently, the power
spectrum Ξ(Ω), are known, using the values of k(t) given
below Eq. (S7) one can perform the averaging in Eq. (S4)
and then perform integration over time to find the power
spectrum ΦF . This was done to obtain the results shown
in Fig. 2 of the main text.

For slowly varying frequency noise on the scale of the
oscillator relaxation time Γ−1, the evaluation of the sus-
ceptibility following the prescription given in the main
text leads to expression

χ(ωF ) =
i

2ω0
⟨X(t)⟩, X(t) = [Γ− iδωF + iξ(t)]

−1
.

(S8)
whereas the expression for the driving-induced term in
the power spectrum reads

ΦF (ω) ≈
1

8ω2
0

Re

∫ ∞

0

dtei(ω−ωF )t
⟨
X(t)[X∗(0)

− ⟨X∗(0)⟩]
⟩
. (S9)

These expressions can be used for numerical calculations
if the statistics of the noise ξ(t) is known.

B. The weak-noise condition

In the limit of weak slow noise, ⟨ξ2(t)⟩ ≪ |Γ− iδωF |2,
Eq. (S9) goes over into the result for such noise obtained
in the main text; note that in Eq. (4) of the main text one
should replace ω−ω0 with ωF−ω0 in the slow-noise limit,
since function Ξ(Ω) is concentrated in the range of small
Ω ≪ Γ. For the broad-band noise, on the other hand, the
weak-noise limit discussed in the main text corresponds
to |µ(1)| ≪ Γ. In this case the noise power spectrum is
flat and Ξ(Ω) = (d2µ/dk2)k=0 ∼ |µ(1)| ≪ Γ. Generally,
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the weak noise condition used to obtain Eq. (4) of the
main text certainly holds for maxΞ(Ω) ≪ Γ. It is impor-
tant that, for slow noise, the condition is less stringent
and can be met by increasing the detuning |δωF |, allow-
ing one to read the slow-noise power spectrum directly
off the oscillator power spectrum.

C. Susceptibility of a linear oscillator with weakly
fluctuating frequency

Both the standard susceptibility χ(ω) and the power
spectrum in the absence of driving Φ0(ω) are affected
by frequency noise. In the considered case they are re-
lated by the fluctuation-dissipation relation, Φ0(ω) =
(2kBT/ω)Im χ(ω). For a non-white frequency noise the
spectrum Φ0(ω) becomes non-Lorentzian.
The explicit expressions for the susceptibility in the

limiting cases of fast and slow frequency noise were given
above, Eqs. (S6) and (S8). A simple explicit expression
for χ(ω) follows from Eqs. (S4) and (S5) also in the case
of weak noise. Here, the susceptibility becomes

χ(ω) ≈ i

2ω0(Γ− iδω)

[
1−

∫
dΩ

2π(Γ− iδω)

Ξ(Ω)

Γ− iδω − iΩ

]
,

(S10)

where Ξ(Ω) is the frequency noise power spectrum and
δω = ω − ω0. Importantly, the noise-induced correc-
tion just slightly distorts the susceptibility. For example,
a sharp low-frequency peak of Ξ(Ω) does not lead to a
narrow peak in χ(ω) and, respectively, in the power spec-
trum Φ0(ω). This should be contrasted with the narrow
peak in ΦF (ω), which emerges in this case.

III. POWER-LAW NOISE IN CARBON
NANOTUBE RESONATORS

The device consists of a carbon nanotube contacted by
source and drain electrodes and suspended over a gate
electrode. Details of the fabrication and the geometry
of the device can be found in Ref. [4]. We measure
power spectra of displacement fluctuations using the
experimental setup sketched in Fig. S1a. Displacement
fluctuations induce conductance fluctuations. We para-
metrically down-convert these conductance fluctuations
by applying an AC voltage δVsd(t) between source and
drain at a non-resonant frequency ωsd, resulting in cur-
rent fluctuations at frequencies |ω0−ωsd| ∼ 2π×10 kHz.

The spectrum shown in Fig. 3a of the main text is ob-
tained in the presence of a near resonant oscillating elec-
trostatic force δF (t). This force is created by applying an
oscillating voltage δVg(t) = δV AC

g cosωF t at a frequency

ωF = ω0 − 2π × 102 Hz, with ω0/(2π) = 6.3 × 106 Hz,
and an amplitude δV AC

g = 4.9 × 10−7 V. In this exper-

iment, a DC gate voltage V DC
g = 1.454 V and an AC

source-drain voltage of amplitude δV AC
sd = 89 × 10−6 V

are used. The amplitude δV AC
sd is kept below the

threshold beyond which the variance of displacement of
the nanotube increases with δV AC

sd (as in Ref. [4]). The
mode temperature is 1.2 K. The integration time is 32 s.

It is important to verify that applying δVg(t) does not
result in an increase in the mode temperature. We con-
sider the case ωF = ω0 where an increase of temperature,
if any, should be most pronounced. Two mechanisms are
liable to increase the mode temperature: (i) dissipated
power related to the work done by the oscillating reso-
nant force from the gate electrode δF (t), and (ii) Joule
heating related to the current, flowing through the nan-
otube, that is induced by the time-varying capacitance
between the nanotube and the gate electrode. We now
discuss the effects of these mechanisms.

(i) From the work of a resonator subject to an oscillat-
ing force δF , the time average power reads:

⟨PδF ⟩ =
δF 2Q

2Mω0
, (S11)

where Q is the quality factor and M is the effective
mass of the mode. The amplitude of the oscillating
force is δF = C ′

gV
DC
g δVg, where C ′

g is the deriva-
tive of the gate capacitance with respect to a small
displacement (we assume that the whole length of
the nanotube is at a single, well-defined potential).
From Coulomb blockade measurements, we estimate
that C ′

g = 1.2 × 10−12 F/m as detailed in Ref. [4].

We estimate the mass M = 9.8 × 10−21 kg from
the diameter and the length of the nanotube. In
Figs. 3b, c of the main text, the maximum ampli-
tude δVg is ∼ 6.4 × 10−7 V. Using Q = 1.2 × 104,
V DC
g = 1.454 V, and ω0/(2π) = 6.3×106 Hz, we find

that the maximum dissipated power is ⟨PδF ⟩max ≃
2× 10−20 W. This is a minuscule power.

Using a thermal conductance of 10−12 W/K, this
dissipated power translates into a temperature in-
crease ∆T ∼ 10−8 K, a truly insignificant increase.
This thermal conductance is inferred from two pub-
lished measurements at liquid helium temperature.
The thermal conductance for a multi-wall carbon
nanotube with a length of 2.5 µm and a diame-
ter of 14 nm was measured to be ∼ 10−10 W/K
[5]. The thermal conductivity of aligned single-wall
nanotubes was measured to be ∼ 1 Wm−1K−1 [6].
These two measurements indicate that the thermal
conductance is in the range 10−12− 10−11 W/K for
a nanotube with a diameter of 1 nm and a length
of 2 µm.

(ii) As the nanotube vibrates, the distance that sepa-
rates it from the gate electrode is modulated, and
so is the gate capacitance Cg. The driving of Cg re-
sults in a current at the driving frequency that flows
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FIG. S1. (a) Measurement setup. Fluctuations of the position
of the nanotube induce fluctuations of the gate capacitance
Cg, which in turn result in fluctuations of the conductance
of the nanotube. Applying an oscillating voltage δVsd(t) be-
tween source S and drain D results in current fluctuations δI,
which are converted into voltage fluctuations across a resis-
tor R. These voltage fluctuations are amplified and cross-
correlated, yielding the variance of current fluctuations ⟨δI2⟩.
Modulation at frequency ωF is obtained by applying an os-
cillating gate voltage of amplitude δVg. (b) Inverse of the
quality factor as a function of δV 2

g . Parameters used are

V DC
g = 1.454 V, δVsd = 89 × 10−6 V, and integration time

32 s. The resonant frequency is ω0/(2π) = 6.3 × 106 Hz. (c)
Narrow band frequency noise spectrum. It is obtained by fit-
ting the broad band frequency noise part ⟨δI2⟩broad(ω) of the
experimental spectrum in Fig. 3 to a Lorentzian, and then by
subtracting this fit from the experimental spectrum. The red
line is a fit to 1/f1/2, where f = |ω − ωF |/2π.

through the nanotube. On resonance, this current
reads:

IδC(t) = ω0V
DC
g δCg sinω0t , (S12)

where δCg is the driving amplitude of Cg. Note that
IδC(t) also has components proportional to CgδVg,
but these have amplitudes that are several orders
of magnitude smaller than ω0V

DC
g δCg. The time

average dissipated power related to Joule heating
reads

⟨Pd⟩ = Rt⟨IδC(t)2⟩ = Rt(V
DC
g ω0δCg)

2/2 , (S13)

where Rt is the resistance of the nanotube. We
estimate δCg = C ′

gδz0 ≃ 10−21 F, using the res-

onant displacement δz0 = QC ′
gV

DC
g δVg/(Mω2

0) ≃
0.6 × 10−9 m as an approximation of the mo-
tional amplitude. Hence, the dissipated power is
⟨Pd⟩max ≃ 10−22 W. Here again, the induced tem-
perature increase can be neglected.

Confirming these estimates, Fig. S1b shows that the
inverse of the quality factor 1/Q does not vary as δV 2

g

increases. Since an increase in temperature would result
in an increase in 1/Q, this further indicates that δVg(t)
does not affect the mode temperature.

The spectral feature at ωF , which we associate to a
narrow band frequency noise, is not related to the phase
noise of the source used to supply δVg(t). Indeed, the
phase noise of our source ∼ 10 Hz away from ωF is
∼ −60 dBc/Hz, which would result in side bands of am-
plitude ∼ 10−27 A2. These side bands would then be 4
orders of magnitude smaller than the spectral feature we
associate with narrow band frequency noise.

Since the narrow-band frequency noise in the nanotube
is comparatively weak, one can interprete the results us-
ing the weak-noise expression for the spectrum Eq. (4)
of the main text. Then the shape of the resonator spec-
trum gives the shape of the noise power spectrum. As
seen from Fig. S1c, the spectrum is of 1/fα type. Our
data indicate that α is close to 1/2.
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FIG. S2. The power spectrum of the fluctuating current δI(t)
shown in Fig. 3a of the main text. Here the separation be-
tween the light and dark green shaded areas is obtained by
approximating the dark green shaded area by a Lorentzian of
the same shape as a Lorentzian that approximates the spec-
trum without driving (the blue line in Fig. 3a).

To highlight spectral features that we associate to
frequency noise (light and dark green shaded areas in
Fig. 3a of the main text), we exclude the δ-peak at
driving frequency ωF . To this end, we observe that the
response of our signal analyzer to a voltage oscillating
at a given frequency is a delta peak that consists of 3
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points above the background. Similarly, the δ-peak at
ωF displayed as a black trace in Fig. 3a of the main text
consists of 3 data points above the background signal.
We remove those 3 points from the measured spectra to
estimate the spectral areas plotted in Figs. 3b, c.

In Fig. 3a of the main text, the separation between
the light and dark green shaded areas is subject to some
uncertainty because of the noise in the measurement. In
Fig. S2 we separate these two areas by approximating the
broad peak by a Lorentzian. This also leads to a linear
dependence of the areas of the peaks on δV 2

g , with the
difference in the slopes . 10% compared to the results in
Fig. 3b, c of the main text. Because of the narrow-band
noise, the power spectrum without modulation actually
differs from a Lorentzian, but this is hard to reveal by
measuring just this spectrum alone (or the absorption
spectrum).

IV. THE AREA OF THE DRIVING-INDUCED
SPECTRAL PEAK FOR A LINEAR OSCILLATOR

We now consider the area SF of the driving induced
spectral peak for ω close to ω0, ωF ; note that this peak
may have several maxima, as seen from Fig. 2 of the
main text. We define the area as an integral over positive
frequencies, SF =

∫∞
0

dωΦF (ω). Keeping in mind that
ΦF (ω) is small for large |ω− ωF | ∼ ωF [in fact, Eq. (S4)
does not apply for such ω], we obtain

SF =
π

8ω2
0

∫∫ 0

−∞
dt dt′⟨χsl(0, t)χ

∗
sl(0, t

′)⟩

− π

8ω2
0

∣∣∣∣∫ 0

−∞
dt ⟨χsl(0, t)⟩

∣∣∣∣2 . (S14)

This expression describes the dependence of the area
of the driving-induced spectrum on the parameters and
statistics of the frequency noise.
From Eq. (S14), the area SF becomes zero in the ab-

sence of frequency noise, since ⟨χsl(t, t
′)⟩ = χsl(t, t

′) in
this case. The area SF linearly increases with the fre-
quency noise intensity for weak noise, as seen from Eq. (4)
of the main text.
An explicit expression for SF can be obtained for white

frequency noise. From Eq. (5) of the main text,

SF =
π

8Γω2
0

Reµ(1)

|Γ + i(ωF − ω0) + µ(1)|2
. (S15)

From Eq. (S15), SF linearly increases with the charac-
teristic noise strength Re µ(1) where it is small, but
once the noise becomes strong, SF decreases with in-
creasing |µ(1)|, with SF ∝ Re µ(1)/|µ(1)|2 for |µ(1)| ≫
Γ, |ωF − ω0|.
For weak narrow-band frequency noise, from Eq. (4)

of the main text one obtains SF in terms of the noise

variance ⟨ξ2(t)⟩ as

SF =
π

8ω2
0

⟨ξ2(t)⟩
[Γ2 + (ωF − ω0)2]2

.

An explicit expression for SF can be obtained also for
a strong Gaussian noise. We will assume that the noise
correlator ⟨ξ(t)ξ(0)⟩ is not fast oscillating and, respec-
tively, the noise spectrum Ξ(Ω) does not have narrow
peaks or dips. For the noise variance ⟨ξ2(t)⟩ much larger
than Γ2, δω2

F , and the squared reciprocal noise correla-
tion time t−2

c , from Eq. (S14)

SF ≈ π2

8Γω2
0

[2π⟨ξ2(t)⟩]−1/2. (S16)

The variation of SF with the varying frequency-noise
intensity and bandwidth is shown in Fig. S3, which refers
to the exponentially correlated Gaussian noise. As seen
from this figure, SF displays a maximum as a function of
the noise intensityD. The dependence on the noise band-
width λ is more complicated; SF can have two maxima
as a function of λ for sufficiently strong noise intensity.

FIG. S3. The scaled area S̃F = 8Γ2ω2
0SF of the driving-

induced peak in the oscillator power spectrum as a function
of the frequency noise parameters. The data refer to Gaussian
frequency noise with the power spectrum Ξ(Ω) = 2Dλ2/(λ2+
Ω2).

A. Scaling of the driving-induced power spectrum

A convenient scaling factor for the distribution ΦF (ω)
and for the area SF is provided by the area Sδ of the
δ-peak in the oscillator power spectrum at the driv-
ing frequency. As seen from Eq. (2) of the main text,
Sδ = (π/2)|χ(ωF )|2. If χ(ωF ) is known from the mea-
sured power spectrum in the absence of driving with the
invoked fluctuation-dissipation theorem, scaling by Sδ al-
lows one to avoid the actual measurement of the force F ,
which requires knowledge of the coupling to the driving
field.

The expression for Sδ simplifies if the frequency noise
can be thought of as a sum of a weak narrow-band noise



6

ξnb(t) and a broad-band (δ-correlated in slow time) noise
ξbb(t), which is not weak, generally, and is statistically
independent from the narrrow-band noise. In this case,
combining Eqs. (S6) and (S8) and expanding to the lead-
ing order in the weak narrow-band noise, we obtain

Sδ ≈ π

8ω2
0

[Γ̃2 + (ωF − ω̃0)
2]−1

×

[
1− Γ̃2 − (ωF − ω̃0)

2

π[Γ̃2 + (ωF − ω̃0)2]2

∫
dω Ξnb(ω)

]
. (S17)

Here, Ξnb(ω) is the power spectrum of the narrow-band
noise; the variance of the narrow-band noise is ⟨ξ2nb(t)⟩ =
(2π)−1

∫
dω Ξnb(ω).

The correction that contains Ξnb can be directly read

off the area of the narrow peak Φ
(nb)
F (ω) in the spectrum

ΦF (ω), which is due to the narrow-band noise. For weak
narrow-band noise, this peak is described by Eq. (4) of

the main text if one replaces in this equation Γ with Γ̃,
ω0 with ω̃0, and Ξ(ω) with Ξnb(ω). This can be seen
from Eq. (S4). Indeed, in the expression for χsl(t, t

′) in

Eq. (S4) one can write
∫ t

t′
dt′′ξnb(t

′′) ≈ ξnb(t)(t− t′). To

find Φ
(nb)
F (ω), one should integrate over the range of t

given by the reciprocal bandwidth of the narrow-band
noise. Since it largely exceeds 1/Γ, the contributions of
the broad-band noise to χsl(t, t

′) and χsl(0, t
′
1) are sta-

tistically independent. Therefore the averaging over the
broad-band noise in these susceptibilities can be done in-
dependently. If this averaging is denoted by ⟨·⟩bb,

⟨χsl(t, t
′)χ∗

sl(0, t
′
1)⟩bb ≈ ⟨χsl(t, t

′)⟩bb⟨χ∗
sl(0, t

′
1)⟩bb

for Γt ≫ 1. Here

⟨χsl(t, t
′)⟩bb ≈ e

−
[
Γ̃−i

(
ωF−ω̃0−ξnb(t)

)]
(t−t′)

.

Since function Ξnb(ω) quickly falls off with increasing
|ω|, in the denominator of Eq. (4) of the main text one
can replace ω with ωF . One then sees that, to the leading
order in the narrow-band noise strength, the ratio of the

area Snb of the narrow peak Φ
(nb)
F (ω) to the area of the

δ-peak in the spectrum is

Snb

Sδ
≈ 1

2π

1

Γ̃2 + (ωF − ω̃0)2

∫
dω Ξnb(ω). (S18)

Equations (S17) and (S18) can be used to scale the area
of the broader peak of ΦF (ω) by Sδ with account taken of
the effect of the narrow-band frequency noise. Along with
the onset of a narrow peak in ΦF , this noise leads to the
change of the shape and area of the broad peak. Where
the narrow-band noise is weak, the leading-order correc-
tion can be found by replacing δωF with δωF − ξnb(t) in
Eq. (S4) for χsl(t, t

′) and then expanding to second order
in ξnb(t). The result is particularly simple in the consid-
ered here case where the broad-band frequency noise is
δ-correlated in slow time and the broad peak of ΦF (ω) is
described by Eq. (5) of the main text. One just has to
replace in this equations ω̃0 with ω̃0 + ξnb(t), expand in
ξnb(t) to the second order, and average ξ2nb(t) → ⟨ξ2nb(t)⟩.
The corresponding expression for the area Sbb of the
broad peak of ΦF (ω) reads

Sbb ≈ π

8ω2
0

Reµ(1)/Γ

[Γ̃ + (ωF − ω̃0)]2

×

[
1− Γ̃2 − 3(ωF − ω̃0)

2)

2π[Γ̃2 + (ωF − ω̃0)2]2

∫
dω Ξnb(ω)

]
. (S19)

Equations (S18) and (S19) lead to Eq. (6) of the main
text, which shows the contribution of the frequency noise
to the width of the broad peak of the spectrum.

V. NUMERICAL SIMULATIONS

The results of the simulations presented in Figs. 2 and
4 of the main text were obtained in a standard way. We
integrated the stochastic differential equation (S3) using
the Heun scheme [7]. For a nonlinear oscillator this equa-
tion has the extra term 3i(γ/2ω0)|u|2u in the right-hand
side [1]. For a nonlinear oscillator, we verified that the
values of the modulating field amplitude F were in the
range where the driving-induced term in the power spec-
trum was quadratic in F . As seen from the inset in Fig. 4
of the main text, the simulations are in excellent agree-
ment with analytical results [1] in the absence of driving.
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