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When electrons pass through a cylindrical electrical conductor
aligned in a magnetic ®eld, their wave-like nature manifests itself
as a periodic oscillation in the electrical resistance as a function of
the enclosed magnetic ¯ux1. This phenomenon re¯ects the depen-
dence of the phase of the electron wave on the magnetic ®eld,
known as the Aharonov±Bohm effect2, which causes a phase
difference, and hence interference, between partial waves encir-
cling the conductor in opposite directions. Such oscillations have
been observed in micrometre-sized thin-walled metallic cylin-
ders3±5 and lithographically fabricated rings6±8. Carbon
nanotubes9,10 are composed of individual graphene sheets rolled
into seamless hollow cylinders with diameters ranging from 1 nm
to about 20 nm. They are able to act as conducting molecular
wires11±18, making them ideally suited for the investigation of
quantum interference at the single-molecule level caused by the
Aharonov±Bohm effect. Here we report magnetoresistance mea-
surements on individual multi-walled nanotubes, which display
pronounced resistance oscillations as a function of magnetic
¯ux. We ®nd that the oscillations are in good agreement with
theoretical predictions for the Aharonov±Bohm effect in a hollow
conductor with a diameter equal to that of the outermost shell of
the nanotubes. In some nanotubes we also observe shorter-period
oscillations, which might result from anisotropic electron cur-
rents caused by defects in the nanotube lattice.

In a diffusive and thin-walled metallic cylinder, a prominent
periodic quantum correction to the resistance arises from the
interference of closed electron trajectories that encircle the cylinder
once. The phase difference Df between each such trajectory ¡ and
the time-reversed counter-propagating trajectory ¡9 (Fig. 1a) is
solely determined by the magnetic ¯ux © enclosed: Df �

2p�2e=h�©, where e and h are the electron charge and Planck's
constant, respectively. Consequently, the electrical resistance has an
oscillating contribution with period h/2e, known as the Altshuler±
Aronov±Spivak (AAS) effect1. For zero magnetic ¯ux, these inter-
ference terms add up constructively, increasing electron back-
scattering and thereby the electrical resistance, an effect known as
weak localization19. For a thin metallic ®lm in a perpendicular
magnetic ®eld, the weak-localization resistance correction mono-
tonically disappears in higher ®elds (negative magnetoresistance,
MR). In contrast, for a cylinder in a parallel magnetic ®eld, weak
localization is periodically modulated with a magnetic-®eld period
given by DB � �h=2e�=r2p, where r is the radius of the cylinder.

We have carried out electric-transport measurements on multi-
walled carbon nanotubes (MWNTs) composed of multiple coaxial
graphene cylinders, in a magnetic ®eld parallel to the axis of the
nanotubes. An example is shown in Fig. 1b. Coulomb blockade can
strongly affect electrical transport in small structures, and we
therefore use samples containing only a single contacted nanotube
with low contact resistances (that is, not exceeding a few kilohms).
Although this approach will not completely exclude Coulomb
blockade effects, the different measurements and control experi-
ments carried out indicate that Coulomb blockade is, at most, of
minor importance. For example, we have never observed that

cooling leads to an increase in the resistance of a nanotube towards
an isolating state, as would be expected for Coulomb blockade, and
current±voltage characteristics were checked to be linear to at least
10 mV. We have also performed control experiments using an
additional gate electrode. For electrostatic gating ®elds of up to
108 V m-1, we observed resistance changes not exceeding 10%.
Although the changes depend weakly on the electric ®eld, we have
not been able to gate the nanotube into an insulating state, as would
occur if Coulomb blockade were important.

Figure 2 shows the measured electrical resistance (solid curves) of
a MWNT as a function of magnetic ®eld B for different tempera-
tures. A large modulation of the resistance (,30%) is observed,
comparable in size to the quantum resistance h/2e2. Starting from
B � 0, the resistance decreases with increasing ®eld. Previous
studies in perpendicular magnetic ®elds observed, a similar decrease
in MR which could be interpreted within the framework of weak
localization11,17. It thus seems reasonable to assume that the same
physics is responsible for the resistance change seen here. At higher
magnetic ®elds, a second resistance peak develops at 68.8 T. This
second peak is assigned to the reappearance of enhanced back-
scattering due to the AAS effect. As expected, a similar peak is not
observed in perpendicular ®elds.

To provide further evidence for the resistance oscillations con-
stituting AAS effects, we compare our measurements with theoretical
predictions for the AAS effect in cylinders1,4. We ®rst determine the
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Figure 1 A single multi-walled carbon nanotube electrically contacted with four

electrodes. a, Diagram of a multi-walled nanotube (MWNT), which is composed

of a series of coaxial graphene cylinders. The electrical resistances of single

MWNTs are measured via four electrical contacts (imposed current I and

measured voltage V) in a magnetic ®eld B which is aligned parallel to the tube axis

to within a few degrees. A periodic magnetoresistance is expected to originate

from quantum interference of counter-propagating closed diffusive electron

trajectories, like those denoted by ¡ and ¡9 or g. b, Scanning-electron microscopy

(SEM) image of a MWNTcontacted by four Au ®ngers; the direction of B is shown

by a white arrow. The MWNTs are produced by arc-discharge evaporation27. After

puri®cation28, they are adsorbed from a dispersion in chloroform onto an oxidized

Si wafer. An electrode structure, consisting of four Au ®ngers which are 70 nm

thick, ,100 nm wide, 2 mm long, and separated by 350 nm (centre-to-centre), is

then patterned onto the nanotubes using electron-beam lithography. As a SEM

image can only give a qualitative estimate for the diameter of the nanotube,

atomic force microscopy is used to determine the diameter of an electrically

measured MWNT.
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effective (that is, the mean current-carrying) cylinder radius re from
the peak position at a magnetic ®eld of 8.8 T. As this ®eld ought
to correspond to a magnetic ¯ux of h/2e threading the cross-section
pr2

e, a radius of re � 8:6 6 0:1 nm is inferred. This value is in
excellent agreement with the outer radius r0 � 8 6 0:8 nm of the
nanotube as determined by atomic force microscopy and not, as one
might have expected, with the mean radius of all graphene cylinders
of this MWNT (expected to be &5 nm).

For comparison with theory, we ®rst consider a single graphene
cylinder with known radius re. Then, three parameters appear in the
AAS theory: the misalignment angle £ between the magnetic ®eld
direction relative to the cylinder axis, the length L of the current-
carrying part of the cylinder between the contacts, and the tem-
perature-dependent phase-coherence length lf. We note that a value
of £ of a few degrees can account for the observed reduced
amplitude of the resistance peaks at 68.8 T (ref. 4). Matching the
theory to the measurement at T � 1:8 K, we obtain lf � 54 nm,
L � 170 nm and Q � 4:48. These values of £ and L agree well with
the geometry of this sample. Keeping £ and L constant, a similar
procedure is applied to the other MR curves. As illustrated in Fig. 2,
we ®nd good agreement between theory (dotted lines) and experi-
ment (solid lines). This agreement is obtained while assuming that
only one graphene cylinder contributes to the conductance. We may
relax this assumption by considering a set of concentric cylinders
which carry the electrical current equally. Under the constraints
given by the measured outer diameter (for possible radii r) and the
distance between contacts (for L), we ®nd that at most two outer
shells can contribute; this is much less than the number of shells that
make up an actual MWNT (in our case, ,20 are expected).

We therefore conclude that quantum-interference corrections to
the resistance can account for the measured MR, if and only if the
electrical current is assumed to ¯ow in one (or two) of the outer-
most shells. This ®nding may be understood as follows: by virtue of
the fabrication technique, contact is made to the outer surface of
the nanotube, so that current is injected into the outermost
conducting graphene cylinder. As nanotubes can be conducting or
insulating20±24, the outermost conducting tube may be followed by
an insulating one, restricting the conduction to one cylinder. It is
also possible that the anisotropy of the conductivity, which resem-
bles graphite25, is enough to keep the current con®ned to one
cylinder, in particular at low temperatures where inter-shell hop-
ping is suppressed. Owing to the small current-carrying cross-
section, a remarkably low resistivity is obtained. We estimate this
resistivity to be &10 mQ cm at room temperature, which is compar-
able to that of metals with good conductivity.

In addition to the MR shown in Fig. 2, we have also observed an
oscillatory feature on several other MWNTs (we believe that this
latter feature has not been previously observed). Figure 3 shows
such a measurement for two temperatures for a nanotube of outer
radius r0 � 6:5 6 0:5 nm determined by atomic force microscopy.
The most striking and immediately visible difference from the
previously mentioned sample is a superimposed short-period
oscillation (see arrows). In agreement with the MR of the previous
sample, the resistance (neglecting the rapid oscillation) at ®rst
decreases with increasing magnetic ®eld. Then, it develops a mini-
mum at ,9 T and increases again, possibly towards a second
maximum, which is beyond the experimental ®eld range and is
expected at ,18 T from the measured size of the tube. The linear
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Figure 2 Magnetoresistance R(B) at ®ve different temperatures T measured for a

MWNT in a parallel magnetic ®eld B (solid curves). The dotted curves correspond

to theoretical predictions for the quantum correction to the resistance of a thin-

walled cylindrical conductor using the parameters: re � 8:6nm, v � 4:48 and

L � 170 nm for the effective cylinder radius, the angle between magnetic ®eld

and cylinder axis, and the length of the cylinder between the electric contacts,

respectively. All curves are vertically offset for clarity. At zero ®eld the absolute

values for the resistances are (kQ): 30.6, 30.1, 29.8, 25 and 21.4 from top to bottom

(T � 0:3; ¼ ; 70 K). Non-reproducible temporal resistance jumps are observed in

the experiment, possibly caused by temporal changes in the electric contacts,

defects or impurities in the nanotubes.
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Figure 3 As Fig. 2 but for two different temperatures T on another MWNT. The

general decrease of the resistance from 0T to ,9T, and the subsequent increase

to a possible second maximum (beyond the magnetic-®eld range of the

experiment), is assigned to the fundamental oscillation of the AAS effect. In

addition, a superimposed oscillation with a much smaller period is clearly visible.

Positions of maxima in resistance for this oscillation are labelled by arrows and

plotted in the left inset, which shows that the oscillation is periodic with period

DBfast � 1:8T. The peak positions agree for both temperatures. This oscillation is

interpreted to originate from electron interference of preferentially selected

higher-order loops which wind several times around the nanotube (see also

Fig. 1a). Right inset, theoretically predicted MR for (i) the `full' AAS effect (that is,

adding up corrections from loops with all winding numbers) and (ii) the case when

only trajectories with winding number 1 and 10 are considered. For both cases,

we require the magnitude of the resistance correction to match the experimental

data. The strong temporal resistance ¯uctuations, which appear near zero ®eld,

are not yet understood, but disappear for larger ®elds jBj * 1:5T.
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dependence of the peak positions of the short-period oscillation on
magnetic ®eld (Fig. 3 left inset) demonstrates that a periodic
oscillation is observed with period DBfast � 1:8 T. DBfast cannot
correspond to the fundamental h/2e period of the AAS effect, as
this condition would require a cylinder with an effective radius of
re � 19 nm, which is signi®cantly larger than the outer radius for
this nanotube. As the two peaks denoted by 3 and 7 appear
approximately symmetrical with respect to the gross-minimum of
the MR curve, the minimum is assigned to coincide with peak
number 5. The fundamental AAS period then comprises n � 10
`fast' oscillations.

Being convinced about the assignment for the fundamental AAS
period, we ask where the `fast' magneto-oscillation may come from.
Closed electron trajectories that encircle the tube once (winding
number 1) give rise to the fundamental magnetic ¯ux-period h/2e.
Trajectories with a larger winding number n . 1 (see, for example,
the n � 3 loop denoted by g in Fig. 1a) contribute to the resistance
with an oscillating term given by K0�n2pr=lf�cos�2pn©=�h=2e��; the
amplitude is determined by the modi®ed Bessel function K0(x) (refs
1, 4). Though such a contribution has a ¯ux-period which is n-times
smaller than h/2e, the present theory cannot account for the
experimental result. The reason is that the sum over all terms
n � 1; ¼ ; ` of this Fourier series describes a smooth periodic
function with period h/2e. Higher-order oscillations, as observed,
can only show up if trajectories with speci®c winding numbers are
preferentially selected. In order to allow a qualitative comparison,
we display in the right inset of Fig. 3 the theoretical resistance
dependence for two cases: (i) the contributions from all winding
numbers are summed according to theory, (ii) only the n � 1 and
n � 10 terms are retained. The latter resembles the measurement
much more closely. From the condition that the amplitude of the
n � 1 and n � 10 terms should agree with the measurement, the
phase-coherence length is estimated to be lf < 250 nm, which is
much larger (by a factor of 6.5) than the circumference 2pre, in
contrast to the previous example for which lf < 2pre. This dif-
ference may be the reason why speci®c higher-order terms do not
appear in the measurement of Fig. 2. We note that taking only two
terms with distinct winding numbers to contribute to the resistance
correction is justi®ed as a ®rst guess, but certainly oversimpli®es the
problem. In general, there is a distribution of weights for the higher-
order terms which is speci®c for each nanotube, and is observed to
differ from the AAS prediction.

Although we have an understanding of the long-period oscilla-
tions, the appearance of higher-order terms is at present unex-
plained. One possibility is that the short-period oscillations are
due to chiral currents in strained nanotubes26. Chirality is a well
established structural property of carbon nanotubes. In principle,
graphitic tubules have isotropic conductivity; but when they are
mechanically stretched owing to the interaction with the substrate,
or owing to thermal contracting, the `honeycomb' lattice can be
distorted resulting in anisotropic, chiral current. Chirality can select
particular winding numbers which give the higher-order term
superimposed on the long-period oscillations observed in Fig. 3.
In an MWNT the chirality can change from layer to layer, and the
period of short oscillations can vary from tube to tube and from
sample to sample. This ®ne structure in the AAS oscillations is
closely related to the special structure of the carbon nanotubes, and
further experimental and theoretical studies are needed for its
detailed understanding. M
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There are several types of instabilities in ¯uid mechanics that lead
to spontaneous chaotic mixing and intricate patterns. Classical
examples include the Kelvin±Helmholtz instability1,2 in shear
layers, the instability of Taylor±Couette ¯ow between rotating
cylinders3,4 and the Rayleigh-BeÂnard instability in thermal
convection5. More recently, a variety of two- and three-dimen-
sional chaotic mixing phenomena have been observed in other
geometries6±9. Mixing in granular ¯ows10,11, unlike that in stirred
¯uids, is thought to be diffusiveÐalthough periodic forcing has
been used to enhance granular mixing12,13, spontaneous chaotic
granular mixing has not previously been reported. Here we report
the observation of chaotic granular mixing patterns in simple
cylindrical tumblers partially ®lled with ®ne grains. The patterns
form spontaneously when suf®ciently ®ne grains (&300 mm
diameter) are blended. We identify the mechanism by which the
chaotic patterns are produced: a periodic stick±slip behaviour
occurs in the shear layer separating static and ¯owing regions of
grains. This causes weakly cohesive grains to mix at rates over-


