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ABSTRACT

We carried out measurements on nanoelectromechanical systems based on multilayer graphene sheets suspended over trenches in silicon
oxide. The motion of the suspended sheets was electrostatically driven at resonance using applied radio frequency voltages. The mechanical
vibrations were detected using a novel form of scanning probe microscopy, which allowed identification and spatial imaging of the shape of
the mechanical eigenmodes. In as many as half the resonators measured, we observed a new class of exotic nanoscale vibration eigenmodes
not predicted by the elastic beam theory, where the amplitude of vibration is maximum at the free edges. By modeling the suspended sheets
with the finite element method, these edge eigenmodes are shown to be the result of nonuniform stress with remarkably large magnitudes (up
to 1.5 GPa). This nonuniform stress, which arises from the way graphene is prepared by pressing or rubbing bulk graphite against another
surface, should be taken into account in future studies on electronic and mechanical properties of graphene.

Graphene is a newly isolated material whose structure
consists of a single layer of carbon atoms packed in a
honeycomb crystal lattice.1,2 Recently, stacks of graphene
layers were suspended over a trench and clamped at the
edges, obtaining a new type of nanoelectromechanical system
(NEMS).3 Despite thicknesses all the way down to one
atomic layer, these suspended stacks of graphene still
maintain high crystalline order,4 resulting in a NEMS with
extraordinarily small thickness, large surface area, low mass
density, and high Young’s modulus. Because of these
excellent material properties, graphene NEMSs hold promise
as very good detectors of mass, force, and charge and
represent the ultimate limit of two-dimensional NEMSs.

Previous work has shown suspended graphene sheets can
be mechanically actuated, and the resonant frequencies are
extracted using optical interferometry. However, this mea-
surement technique can not identify what the individual
vibrational eigenmodes are.3 In this work, we directly image
the spatial shape of the eigenmodes using a scanning force
microscope (SFM). While the eigenmode shape can match
predictions for doubly clamped beams typically discussed
in elastic beam theory text books, we also observe new exotic
eigenmodes in as many as half the suspended sheets
measured. These exotic eigenmodes would be impossible to
identify using more traditional measurement techniques, such

as optical or capacitive detection, which depend on the
average position of the resonator.3,5

Few-layer suspended graphene sheets were obtained by
mechanical exfoliation.6,7 Highly ordered bulk graphite was
pressed down onto a degenerately doped silicon wafer
patterned with trenches etched into the oxide and with gold
electrodes defined between the trenches. Suitable candidates
for measurement were identified optically,8,9 looking for few-
layer graphene sheets suspended over a trench and contacting
at least one electrode. A scanning electron microscope image
of a suspended graphene sheet used in these experiments is
shown in Figure 1a.

The suspended graphene sheets were electrostatically
actuated to become resonators by wiring them up as shown
in Figure 1b. An oscillating radio frequency voltage VRF was
applied between the back gate and the graphene, resulting
in an oscillating electrostatic force at the same frequency:

FRF )
∂C
∂z

(VDC -�)VRF (1)

where VDC is the dc voltage applied to the gate, � is the
contact potential between the resonator and the gate, and
∂C/∂z is the spatial derivative of the capacitance between
the resonator and the gate.

The mechanical vibration of the resonator was detected
using a recently reported SFM technique, which allowed
the measurement of the resonance frequency as well as
the shape of the eigenmode.10 This technique is particularly
suitable for the detection of low amplitude vibrations, which
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here are typically of the order of 0.1 nm (see Supporting
Information). As shown in Figure 1b, a SFM cantilever scans
over the surface of the suspended sheet, while the resonator
is being driven. The frequency fRF of the driving voltage VRF

is set at (or close to) the resonance frequency of the resonator.
In addition, VRF is modulated at fmod, (1 - cos(2πfmodt))
cos(2πfRFt), so the resonator vibrations are sequentially turned
on and off at fmod (Figure 1c). While the SFM cantilever
cannot follow the rapid oscillations at fRF, it can detect the
height difference between the on and off states of the
modulation envelope. To enhance the detection sensitivity
to the vibrations, fmod is matched to the resonance frequency
of the first eigenmode of the SFM cantilever. At the same
time, the topography is obtained with the second eigenmode
of the cantilever to keep the tip at a constant height above
the surface. Further details on the technique can be found in
Supporting Information.

Table 1 summarizes the dimensional characteristics of the
suspended sheets that we have studied, such as the thickness
t, length l, and width w, as well as the resonance frequencies.
The measured quality factors are low (between 2 and 30).
This low Q is attributed to energy dissipation to air molecules
because the SFM technique is operated at atmospheric
conditions.10,11 The shape of the eigenmodes does not change

as the frequency is swept (within a same resonance peak of
the amplitude versus frequency). All measurements are
performed in the linear amplitude response regime. See
Supporting Information for further details.

The SFM technique yields high resolution images of the
shape of the vibration eigenmodes because the scanning SFM
tip measures the amplitude of vibration as a function of
position. We find two distinct types of eigenmodes in the
suspended graphene resonators. Figures 2a and 3a show the
height topography images of two different suspended graphene
sheets with thicknesses of 11 and 6 nm, respectively. Figures

Figure 1. Device and experimental setup. (a) A scanning electron
microscope image of a suspended graphene resonator. (b) Schematic
of the resonator together with the SFM cantilever. (c) Motion of
the suspended graphene sheet as a function of time. A high-
frequency term at fRF is matched to the resonance frequency of the
graphene, and the resulting oscillation is modulated at fmod.

Table 1. Resonator Characteristicsa

w (µm)

l (µm) t (nm) min max f1 (MHz) f2 (MHz) mode

2.9 1 0.1 0.8 18 beam
2.7 3 0.8 1.8 45 beam
4.4 6 0.5 0.8 33 beam
1.8 10 0.2 0.6 37 beam
2.8 11 0.3 0.5 31 beam
2.9 20 0.6 1.0 57 beam

4.2 4 1.3 1.5 25 59 edge
2.8 5 0.8 1.0 47 edge
3.5 6 1.0 1.4 33 70 edge
2.8 6 0.5 0.8 53 85 edge
2.9 10 0.7 1.5 26 edge
a l is the length of the resonator, t the thickness, w the width, and f1 (f2)

the resonance frequency of the first (second) eigenmode. w can significantly
vary along the resonator, so we report the minimum and the maximum
width.

Figure 2. Graphene resonator with no buckling. (a) Measured
topography. The image reveals irregularities on the surface of the
resonator, presumably due to contamination or bulk graphite residue.
t ) 11 nm, l ) 2.8 µm, wmin ) 0.3 µm, and wmax ) 0.5 µm. (b)
Measured shape of the eigenmode at 31 MHz (raw data). VDC - �
) 3 V and VRF ) 60 mV. The amplitude of vibration is in arbitrary
units. (c) Shape of the eigenmode at 31 MHz obtained using FEM
simulations without any stress. (d) Eigenmode along the line
indicated in Figure 2b.
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2b and 3b,c show the corresponding eigenmodes with
respective resonance frequencies 31, 53, and 85 MHz,
respectively. For some resonators, the amplitude of vibration
remains uniform across the width of the sheet similar to
standard beam resonators (Figure 2b), while for others, the
vibrations are the largest in amplitude along one of the free
edges (Figure 3b,c). We call the former modes “beam modes”
and the latter “edge modes”.

Let us first compare the beam modes to predictions from
the elastic beam theory, which describes the dynamics of a
linear resonator with a uniform cross-section.12 A beam under
weak uniform tension T is predicted to have a fundamental
mode resonance frequency of

f1 )
1.028

l2 �Et2

F
+ T

0.154

√FEw2t4
(2)

where the shape of the first eigenmode along the beam axis
x is predicted to be

z1 ) [cos(4.73x
l )- cosh(4.73x

l )]- 0.98[sin(4.73x
l )-
sinh(4.73x

l )] (3)

where the Young’s Modulus is E ) 1 TPa and the mass
density is F ) 2200 kg m-3. Taking the values l ) 2.8 µm
and t ) 11 nm for the graphene sheet shown in Figure 2
and assuming T ) 0, eq 2 predicts a resonance frequency f1

) 31 MHz, in excellent agreement with the experimentally
measured value. In addition, we find that eq 3 qualitatively
describes the measured eigenmode shape (as shown in Figure
2d). Note, however, that eqs 2 and 3 are calculated when
the resonator is perpendicular to the clamping edge and has
a constant width along the beam axis. The topography image
of the suspended sheet shows that this is not the case (Figure
2a). We have developed a model based on the finite element
method (FEM) to take these complications into account (see

Supporting Information). Parts c and d of Figure 2 show the
predicted eigenmode shape of the resonator according to
FEM. The predicted eigenmode has resonance frequency of
31 MHz, in excellent agreement with the measured value.
The shape agrees qualitatively with the measurements and
remains very similar to the predictions of the elastic beam
theory.

Not all suspended graphene sheets display such conven-
tional eigenmodes. The edge modes shown in Figure 3b,c
are completely unpredicted by standard elastic beam theory.
However, the topography image of the suspended sheet in
Figure 3a shows that the resonator is buckled out of plane
at one edge. This local buckling is measured to have a
maximum out-of-plane displacement of 37 nm and suggests
the presence of nonuniform stress in the resonator. The edge
modes are frequently, but not always, observed in resonators
for which the suspended sheet displays local buckling.

To understand the relationship between local buckling and
the edge modes, we calculate the effect of strain with
simulations based on the finite element method (see Sup-
porting Information). The strain is introduced by imposing
an in-plane stretch and in-plane rotation to the suspended
sheet at the clamping edges. In Figure 3d, we impose an
in-plane stretch of 1.5 nm and in-plane rotation of -0.2°
about a pivot point at the top right of the resonator. This
strain results in local buckling in the lower edge with a
maximum out-of-plane displacement of 36 nm, consistent
with measurement. Parts e and f of Figure 3 show the
predicted eigenmodes for the buckled sheet. Both the
resonance frequencies and shapes are in reasonable agree-
ment with measurements. For comparison, simulations car-
ried out without any stress result in conventional beam modes
as shown in Figure 3g.

Figure 3. Graphene resonator with local buckling. (a) Measured topography. t ) 6 nm, l ) 2.8 µm, wmin ) 0.5 µm, and wmax ) 0.8 µm.
The maximum out-of-plane displacement of the buckling is 37 nm. (b-c) Shape of the first and the second eigenmodes (raw data). VDC -
� ) 3 V and VRF ) 40 mV. The amplitude of vibration is in arbitrary units. (d) Topography obtained using FEM simulations on a stressed
graphene sheet. The maximum displacement is 36 nm. See the text for the boundary conditions. (e-f) Shape of the first and the second
eigenmodes using FEM simulations. (g) Shape of the two first eigenmodes using FEM simulations without any stress. The resonance
frequencies are 17 and 46 MHz.
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This good agreement overall allows us to use the simula-
tion to evaluate the stress in the resonator. Stress is described
by a 3 × 3 tensor that varies over the volume of the
resonator:13

σij ) [ σx τxy τxz

τyx σy τyz

τzx τzy σz
] (4)

where σi is the stress along axis i and τij is the shearing stress
in plane ij. A suitable transformation of the direction of the
coordinate axes through rotation allows the components of
the shearing stress τij to vanish. The result is a diagonal
matrix with 3 components: σ1, σ2, and σ3, where σ1 > σ2,
σ3, and σ1 is known as the principal stress. Note that this
transformation is made for each point of the resonator. The
maximum value of the principle stress before a material
breaks is used as the failure criteria for crystalline materials.13

Figure 4 shows the spatial distribution of σ1 over the top
and the bottom surfaces of the suspended sheet from Figure
3. In between these two boundary surfaces, σ1 varies
continuously (not shown). The maximum stress in the
suspended sheet is very high, about 1.5 GPa. For comparison,
it has been shown that 1020 steel breaks at 690 MPa,13

MWNTs between 11 and 63 GPa,14 and SWNTs between
13 and 52 GPa.15 We attribute this high stress to be the
consequence of the macroscopic uncontrolled forces that are
applied during the mechanical exfoliation process step. Part
of the resulting stress remains after the applied forces are
released due to the large van der Waals interaction that holds
the graphene to the SiO2 surface.

Comparing Figures 3 and 4, it appears that the distribution
of stress and the resonance properties are closely related.
The vibration amplitude is larger in regions of lower stress.
In addition, there is a correlation between the resonance
modes and regions of increasing stress: the fundamental
eigenmode resonates at the lower free edge where the stress
is the lowest, and the second eigenmode resonates at the
upper edge where the stress is larger. The underlying physical
mechanism is the same as for a beam under uniform tension
for which the resonance frequency increases as the tension
is raised.16

To conclude, we have imaged the eigenmode shape of graph-
ene resonators. For some resonators, we have found a new class

of nanoscale eigenmodes where the vibrations are maximum
in amplitude, not at the center of the beam but at the free edges.
Simulations based on the finite element method indicate that
these eigenmodes are the result of the high nonuniform stress
present in the resonator. The shape of these exotic eigenmodes
and the corresponding stress must be taken into account in future
experiments and applications, such as for the determination of
the Young’s modulus17,18 and the accurate calibration of mass,
force, or charge sensing.3,19,20 It could also be possible to
manipulate the eigenmode shape by varying the strain during
measurements via electrostatic tuning,3 varying the pressure
difference across sealed membranes, or displacing the
clamping edges. This would allow one to activate mechanical
vibrations in localized areas for multiple-target sensing
applications. It is also important to realize that stress can be
present in graphene sheets regardless of whether they are
suspended or not. This stress needs to be taken into account
when engineering the band gap of graphene ribbons,21–23 in
measuring the amplitude and wavelength of ripples,24,25 or
in estimating the effective magnetic field in quantum electron
interference experiments.26,27
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