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We investigate the efficiency of cooling the vibrations of a nanomechanical resonator, constituted by a
partially suspended carbon nanotube and operating as double-quantum dot. The motion is brought to lower
temperatures by tailoring the energy exchange via electromechanical coupling with single electrons, constantly
flowing through the nanotube when a constant potential difference is applied at its extremes in the Coulomb-
blockade regime. Ground-state cooling is possible at sufficiently high-quality factors, provided that the dephas-
ing rate of electron transport within the double dot does not exceed the resonator frequency. For large values
of the dephasing rates cooling can still be achieved by appropriately setting the tunable parameters.
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I. INTRODUCTION

The experimental demonstration of strong coupling be-
tween a nanomechanical resonator and charge transport in
carbon nanotubes1,2 holds promising perspectives for cool-
ing the temperature of the resonator vibrations by means
of electromechanical forces. It may enable one to improve
the sensitivity of high-precision measurements of mass,3–6

mechanical displacement,7 or spin.8 Cooling by means of
electromechanical coupling, moreover, may allow one to pre-
pare the resonator state in the quantum regime.9 Recently,
it has been theoretically proposed10–17 and experimentally
demonstrated18 that backaction cooling can be achieved by
coupling mechanical resonators to the constant electron cur-
rent flowing through electronic nanodevices, such as normal-
metal and superconducting single-electron transistors.19

Within these studies, it is found that one of the major factors
limiting the cooling efficiency is the quality factor of the
mechanical resonator. In this respect a suspended carbon
nanotube is a promising candidate for achieving ground-state
cooling.20

In this work we theoretically analyze the efficiency of
ground-state cooling the vibrations of a nanomechanical
resonator using constant electron current, in a setup like
the one sketched in Fig. 1. Here, the resonator is a sus-
pended nanotube, which constitutes also the electronic de-
vice through which the current flows, in a setup which is
reminiscent to the ones realized in Refs. 1 and 2. Moreover,
the nanotube acts as a double-quantum dot �DQD�. This
setup allows us to tune the electron current so to enhance the
electromechanical processes which irreversibly absorb
phonons from the resonator. The analysis here presented ex-
tends and complements the proposal in Ref. 21, where we
predicted ground-state cooling in this system for a specific
set of parameters. In the present work we study the cooling
efficiency over a larger parameter space than the one identi-
fied in Ref. 21, showing that large ground-state occupations
can also be obtained for relatively large tunneling rates.
Moreover, we analyze in detail the role of the various noise
sources on the cooling efficiency.

It must be mentioned that cooling and manipulation of
nanomechanical resonators using electromechanical forces is
complementary to the approach using the coupling to
photons.22–31 Both approaches are presently experimentally
pursued. In particular, cooling by means of constant electron
currents is appealing because it is easy to implement in a
dilution fridge as compared to techniques based on photons.
Beyond the specific implementation, ground-state cooling of
the mechanical resonator would open the possibility to create
and manipulate nonclassical states at the macroscopic scale
and to study the transition from the classical to the quantum
regime.9,32,33

This paper is organized as follows. In Sec. II the model is
introduced, which describes the coherent and incoherent dy-

FIG. 1. �Color online� �a� Sketch of the considered setup. The
double quantum dot is a CNT operating as single-electron transistor.
In the picture, the dot on the right is suspended and mechanically
vibrates. Its vibrations couple to the electronic current via electron-
phonon interaction. In this paper we will also consider the situation
in which it is the dot on the left which is suspended. �b� Energy
diagram for the DQD. States �L� and �R� denote one excess electron
in the left and right dot, respectively. The two levels are at tunable
energy difference �� and are coupled by a tunneling barrier with
tunneling matrix element Tc. Left �right� electrode act as source
�drain� such that electron tunnels from left to right at rates �L

and �R.
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namics of the nanotube. The rate equations for cooling are
derived in Sec. III and the cooling efficiency is discussed as
a function of the physical parameters. The conclusions are
presented in Sec. IV.

II. MODEL

A. Setup and basic dynamics

The resonator we consider corresponds to a fundamental
vibrational eigenmode of a partially suspended carbon nano-
tube �CNT�. The eigenfrequency of the mode is � and the
resonator is assumed to be characterized by sufficiently high
quality factors so that the eigenmode can be selectively ad-
dressed by suitably tailoring the mechanical coupling with
the constant electronic current flowing though the CNT. The
eigenmode is here described by a quantum harmonic oscilla-
tor with a† and a the bosonic creation and annihilation op-
erators of a quantum of energy ��. The Hamiltonian for the
resonator is given by

Hph = ��a†a

and it governs its coherent dynamics. The eigenstates are the
number states �n� with energy �n� and n=0,1 ,2 , . . ..

Before discussing the details of the electromechanical
coupling, we first introduce the electronic properties of the
system. The system is in a DQD configuration, as sketched in
Fig. 1�a�: Voltage applied to gate T provides the potential
barrier, which divides the CNT in two coupled quantum
dots.34–37 The voltage applied at the left and right electrodes
warrants that a constant electron current flows through the
CNT from left to right. We denote by �L and �R the chemi-
cal potential at the left and right electrode, respectively, such
that �L��R. We assume that the DQD is working in the
Coulomb-blockade regime such that the charging energy Ec
is much larger then the transport energy window, Ec��L
−�R. In this regime the system operates as a single-electron
transistor �SET�, and the relevant electronic states are the
ground state of the DQD, �0�, and one excess electron either
in the left or in the right dot, corresponding to the quantum
states �L� and �R�, respectively. More specifically, the elec-
tronic ground state corresponds to the state with NL and NR
electrons in the left and right QD, respectively, �0�
��NL ,NR� while �L���NL+1,NR� and �R���NL ,NR+1�, see
for instance Refs. 38–40. We denote by 	L and 	R the energy
of the states �L� and �R� with respect to the ground state.
Their difference is controlled by the gates L and R in Fig.
1�a�. The DQD Hamiltonian, governing the dynamics of the
electrons in the DQD, reads

HDQD = HLR + HT �1�

with

HLR = 	L�L��L� + 	R�R��R� , �2�

HT = − �Tc��R��L� + �L��R�� , �3�

where Tc is the tunneling matrix element between left and
right QD and has the dimension of a frequency. The energy
levels of the QDs and the direction of the electron current are
depicted in Fig. 1�b�.

We now discuss the electromechanical coupling. The vi-
brations are capacitively coupled to the gate R: the gate volt-
age bends the CNT influencing its electric and mechanical
properties. When the vibration amplitude is sufficiently
small, the electromechanical energy can be considered to be
linear in the amplitude. Assuming that the energy difference
between left and right dot is such that 	R−	L���, the elec-
tronic transport couples with the fundamental eigenmode at
frequency �, and this mode is displaced along x so that the
Hamiltonian describing this dynamics can be approximated
by the operator

He-ph = �
�R��R��a† + a� , �4�

where we used x̂�a†+a, and 
 has the dimension of a fre-
quency and gives the strength of the electromechanical cou-
pling. This Hamiltonian describes a shift of the center of
oscillation of the harmonic vibrations, conditioned to the oc-
cupation of the electronic state �R� of the DQD or, in other
terms, an energy shift of the state �R� proportional to the
mechanical displacement of the resonator.

We finally introduce the model for the coupling of the
DQD with the electrodes, which gives rise to the constant
electron current flowing through the CNT. The electrodes are
electron reservoirs, described by the Hamiltonian

Hres = �
k

	k
Lck

†ck + �
k

	k
Rdk

†dk, �5�

where ck and dk �ck
† and dk

†� are fermionic operators, which
annihilate �create� an electron of the respective reservoir and
k runs over all modes of the electrons. Electrodes and QDs
are coupled by electron tunneling, which in Hamiltonian
form reads

WL = �
k

Vk
Lck

†sL + H.c., �6�

WR = �
k

Vk
Rdk

†sR + H.c., �7�

where Vk
L and Vk

R are the tunneling matrix elements between
reservoirs and quantum dots, and s�= �0��j� annihilates an
electron in the QD j, with j=L, R, leaving the QD in the
ground state while an electron is created in one mode of the
reservoir.

In what follows we assume that the bias voltage is suffi-
ciently large such that thermal effects in the coupling with
the electrodes are negligible. This implies that the relations
�L−�R�kBT and �L�	L, 	R��R must hold. In this regime
the electrons tunnel from left to right while transport in the
opposite direction can be neglected. Tunneling from and into
the electrodes can be described in perturbation theory. In
first-order perturbation theory the tunneling rate �L from the
left electrode into the DQD, and the tunneling rate �R from
the DQD to the right electrode, are given by

�L =
2

�
�

k

�Vk
L�2��	L − 	k

L� , �8�
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�R =
2

�
�

k

�Vk
R�2��	R − 	k

R� , �9�

where ��	� expresses the condition of energy conservation
between initial and final states. In the continuum limit the
sums over the modes of the electrodes become integrals,
properly weighted by the density of states.

B. Master equation

In order to describe the effect of quantum noise on the
resonator dynamics we resort to the density matrix for the
degrees of freedom of the mechanical resonator and of the
DQD electronic degrees of freedom. Its dynamics is gov-
erned by the master equation, which also accounts for inco-
herent tunneling from and into the electrodes, dephasing of
transport between the QDs, and thermalization of the reso-
nator to the temperature at the electrodes. The master equa-
tion reads

�

�t
� =

1

i�
	HDQD + Hph + He-ph,�
 + LDQD� + Ld� + K� ,

�10�

where the term

LDQD� = �L/2�2sL
†�sL − �sLsL

† − sLsL
†��

+ �R/2�2sR�sR
† − �sR

†sR − sR
†sR�� �11�

describes incoherent electron tunneling from left electrode to
state �L� and from state �R� to the right electrode while the
term

Ld =
�d

4
�2s�z��s�z� − s�z�2

� − �s�z�2
� �12�

describes electronic dephasing inside the DQD at rate �d
with s�z�= �R��R�− �L��L�. Finally

K� = �n̄p + 1��p/2�2a�a† − a†a� − �a†a�

+ n̄p�p/2�2a†�a − aa†� − �aa†� �13�

represents processes leading to thermalization at rate �p with
a thermal environment at temperature T, such that the mean
number of phonon at frequency � is given by

n̄p = 	exp���/kBT� − 1
−1.

The Liouvillian terms in Eq. �10� are written in the Born-
Markov approximation: The master equation is local in time,
it hence does not consider memory effects which may arise
from the coupling with the reservoir. A master equation for a
double-quantum dot coupled to a resonator has been reported
in Refs. 38 and 41. With respect to that master equation, here
we have added the finite temperature of the electrodes and
the dephasing mechanism. The latter is here modeled accord-
ing to the master equation presented for instance in Ref. 42.

III. ELECTROMECHANICAL COOLING

Ground-state cooling via electromechanical coupling can
be achieved by enhancing the processes of electron transport

which absorb a phonon of the nanomechanical resonator.
This is realized by properly setting the energy difference
between the two QDs. Such processes must take place at
rates which overcome the rate of electromechanical pro-
cesses which tend to heat the resonator and the rate at which
the resonator naturally thermalizes with the surrounding en-
vironment. In this section we derive the basic equations
which describe the cooling dynamics of the resonator and
study them in different limits. The validity of the analytical
predictions is tested by comparing them with the numerical
solution of the master equation.

A. Rate equations for cooling dynamics

In order to identify the important parameters, which de-
termine the cooling dynamics, we resort to perturbation
theory and derive rate equations for the occupation of the
resonator’s vibrational states. This is performed by eliminat-
ing the electronic degrees of freedom from the resonator dy-
namics, assuming that 
, scaling the electromechanical cou-
pling, is much smaller than the characteristic rates
determining the electronic dynamics. In this regime, we as-
sume that the electronic degrees of freedom of the DQD are
in the steady state. This steady state determines the proper-
ties of the electronic current and thus also the autocorrelation
spectrum of the electromechanical force acting on the reso-
nator. Assuming time-scale separation between the electronic
dynamics and the dynamics of electromechanical coupling,
we then derive a master equation for the resonator degrees of
freedom, obtained from master Eq. �10� in second-order per-
turbation theory and tracing out the electronic variables. For
this purpose we rewrite the master Eq. �10� as

�

�t
� = �L0 + L1 + K�� , �14�

where

L0� = L0
�0�� −

i

�
	Hph,�
 �15�

accounts for DQD and resonator dynamics in absence of
electromechanical coupling with

L0
�0�� = −

i

�
	HDQD,�
 + �LDQD + Ld�� �16�

the Liouvillian for the DQD. The term L1 contains the elec-
tromechanical coupling term

L1� = −
i

�
	He-ph,�
 �17�

and it scales with 
. Finally, the Liouvillian K describes the
thermalization of the resonator, it scales with �p, and is given
in Eq. �13�.

We assume that the backaction of the electromechanical
coupling on the electronic state can be neglected, which cor-
responds to considering the regime where �
���R, �L, and
�Tc�. Then, the electronic steady state �St

�0� is determined by
the solution of the equation
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L0
�0��St

�0� = 0. �18�

In particular, �St
�0� can be written as

�St
�0� = �00�0��0� + �LL�L��L� + �RR�R��R�

+ �RL�R��L� + �LR�L��R� , �19�

where the elements scaling with the parameters �0R and �0L,
and corresponding to the coherences between vacuum and
�L�, �R�, are not reported, as �0L and �0R vanish at steady state
due to incoherent tunneling between the electrodes and the
DQD. The other parameters take the form

�LL =
1

�2

4
+ �2

�2
�d�Tc

2

�R
+ �d�

2 + �2� , �20�

�RR = 2
�d�Tc

2

�R�2

4
+ �2� , �21�

�RL =
Tc

�2

4
+ �2

�� + i�d�� �22�

with �LR=�RL
� and �00=1−�RR−�LL. In Eqs. �20�–�22� we

defined �=2	�d��
4Tc

2

�R
+

2Tc
2

�L
+�d��


1/2 and

�d� = �d + �R/2 �23�

giving the total decay of the electronic coherences of the
DQD. We further assume that

�
� � � .

In this limit, a closed set of equations for the occupation of
the resonator states can be derived. For this purpose, we
define the projector P acting over the density matrix of the
system, such that its action over a given density matrix � of
the system reads

P� = �St
�0�

� Trel�P0�� , �24�

where Trel denotes the trace over the electronic degrees of
freedom and P0�=�n�n��n��n���n�. The master equation for
the density operator projected over this subspace can be writ-
ten in the form43,44

�

�t
P� = PKP� + P�

0

�

d�L1eL0
�0��L1P��t� , �25�

where we applied a perturbation expansion to second order
in 
 and took �p�o�
2� so that thermalization effects are
taken at lowest order in the expansion. This latter assumption
is indeed important for the efficiency of the cooling process,
as only in this limit the electromechanical coupling may be
able to counteract effectively thermalization with the exter-
nal environment, bringing the resonator into a dynamical
equilibrium with the electronic current.

After tracing out the electronic degrees of freedom from
Eq. �25� one obtains a set of rate equations for the occupa-

tion pn of the resonator state with n phononic excitations,
which read45,46

ṗn = �n + 1�A−pn+1 − 	�n + 1�A+ + nA−
pn + nA+pn−1, �26�

where A+ and A− are the rate for processes which increase
and decrease, respectively, the state of the mechanical reso-
nator by one excitation. They result from the interplay be-
tween the thermalization processes and of the cooling due to
the mechanical effects induced by the electron current.
Within the parameter regimes considered so far, they are the
sum of thermalization and electromechanical rates, and writ-
ten as

A− = �p�n̄p + 1� + A0−, �27�

A+ = �pn̄p + A0+, �28�

where A0+=2 Re�S�−��� �A0−=2 Re�S����� is the rate for
electromechanical heating �cooling� with

S��� = − 
2Tr��R��R��L0
�0� + i��−1�R��R��St

�0�� �29�

the spectrum of the autocorrelation function of the electro-
mechanical coupling force.43,44,47 It can be rewritten as

S��� = �RRSRR��� + �RLSRL��� , �30�

where

SRR��� =

2

2F������d� − i��2 + 2i
Tc

2

�
��d� − i�� + �2� ,

SRL��� = − i

2Tc

2F���
	�d� − i�� + ��
 , �31�

and F���=
�R

2 FR− i �
2 FI with

FR =
�2

4
+ �2 − �21 +

2�d�

�R
+

2Tc
2

�L

�d� − �L

�L
2 + �2� ,

FI = 2Tc
2�R

�L − �d�

�L
2 + �2 + �d���d� + 2�R� + 4Tc

2 + �2 − �2.

�32�

In the following analysis we will also consider the situation,
in which the resonator couples only with the left dot. In this
case, the equations are modified accordingly, starting from
the spectrum of the autocorrelation function of the electro-
mechanical force, which in this latter case reads

S���� = − 
2Tr��L��L��L0
�0� + i��−1�L��L��St

�0�� . �33�

The corresponding analytical form of the rates are not re-
ported here but are derived using the procedure described
above.

B. Cooling dynamics

From the rate equation for the population of the phononic
states one simply finds an equation for the mean number of
mechanical excitations n̄=�nnpn, which reads45,46
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ṅ̄ = − �totn̄ + A+, �34�

where �tot=A−−A+ is the cooling rate and, in particular,

�tot = �p + �0 �35�

with �0=A0−−A0+ the electromechanical cooling rate. A
steady-state solution is found when �tot�0, giving the aver-
age excitation number at steady state

n̄St =
n̄p�p + n̄0�0

�p + �0
, �36�

where n̄0=A0+ /�0 is the mean phononic number when �p is
set to zero. The cooling dynamics results from the competi-
tion between the mechanical effect of the electron current
and the thermalization with the environment. Clearly, the
electromechanical coupling cools the resonator below the

temperature T of the environment when n̄St� n̄p, which is
possible when n̄0� n̄p. Equation �36� shows that lowest tem-
peratures are achieved when �0��p, giving

n̄St � n̄0 + �n̄p − n̄0��p/�0.

In the following we will search for the parameters which
minimize n̄St for different values of the thermalization rate �p
and of the dephasing rate �d. In order to maximize the cool-
ing rate, we first assume that �L, the rate at which electrons
are injected into the DQD from the left electrode, is the
largest rate characterizing the dynamics �the higher bound is
provided by the condition that the system must operate in the
SET regime�, implying that the time intervals, in which there
is no excess electron inside the DQD, are here the smallest
time scales. In the limit of large injection rates, the cooling
rate �0 reads

�0 �

2

�2� 4Tc
2�R

�2 + 2Tc
2 +

�R
2

4
� �3��2Tc

2 + �R
2 + �2�

�2�2 + 4Tc
2 +

5

4
�R

2 − �2�2

+ �R
2�2 + 2Tc

2 +
�R

2

4
− 2�2�2 + O 1

�L
� �37�

while the mean phonon number n̄0 takes the form

n̄0 �
�R

2 + 4�� − ��2

16��
+ O 1

�L
� . �38�

These expressions have been obtained setting the dephasing
rate �d��R. The effect of dephasing rates �d��R on the
cooling efficiency will be discussed later on. These expres-
sions are valid both for the case in which the resonator
couples to the right or to the left dot. Differences in the
cooling efficiencies for the two setups arise when the value
of �L is lowered so that it becomes comparable with other
rates, as we will show.

1. Ground-state cooling

Ground-state cooling may be obtained when n̄0�1 and
�0��p. Assuming large injection rates into the DQD and
setting the dephasing rate �d=0, small values n̄0�1 are
achieved in Eq. �38� for ���R. The minimum value

n̄0 = �R
2 /16�2

is found setting �=�. From Eq. �37� we find that the cooling
rate is maximum when tunneling rate and detuning fulfill the
relation �=	 with

	 � ��2 + 4Tc
2.

This condition corresponds to the one which minimizes the
temperature, provided that �Tc���. At sufficiently large tun-
neling rates this condition emerges from the physical situa-
tion, in which the electronic states of the DQD are described
by the bonding and antibonding states, such that 	 is their

frequency splitting. These states are the eigenstates of the
Hamiltonian �1� and are given by the quantum superposition
of left and right electronic states

�− � = cos ��L� + sin ��R� ,

�+ � = − sin ��L� + sin ��R� �39�

with tan �=2Tc / ��+	�. In this basis there are two relevant
physical processes, which lead to a change by one phonon
due to electron transport through the DQD. They consist of
the sequential occupation of the states �0,n�→ �� ,n�
→ �� ,n�1�→ �0,n�1�. Both processes are resonant when
the condition 	=� is satisfied. The resonator is cooled when
the rate of the cooling process is faster than the heating pro-
cess, which is here satisfied for ��0, see Eq. �37� and Ref.
21.

Figure 2 displays the contour plots for n̄St and �tot for a
mechanical resonator with quality factor Q=105, the results
are compared with the ideal situation �p=0 �Q→��. We first
discuss the ideal case. Here, we notice that the final mean
occupation depends solely on the detuning �, as expected
from Eq. �38�, while large cooling rates are achieved when
Tc and � satisfy the resonance condition �2��2+4Tc

2 and
0����. At finite Q, efficient cooling is found for the con-
dition at which the cooling rate is maximized, as expected
from Eq. �36�. Note that the cooling efficiency decreases
both in the limit Tc→0 ��→�� and �→0. In the first case,
the total electron transport rate decreases, and correspond-
ingly also the rate of electromechanical processes. In the
second case, the asymmetry between heating and cooling
rates �A�� is reduced.
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2. Effect of dephasing on the cooling efficiency

We now proceed in studying the effect of dephasing on
the efficiency of the cooling mechanism. In Fig. 3 average
phonon number and cooling rate are reported for Q=105 and
setting �d=0.1�, 5�. Clearly, the cooling efficiency is low-
ered as the dephasing is increased. In particular, the larger is
the dephasing, the slower becomes the cooling. Nevertheless,
for �d=5� it is found that the resonator can be cooled from
np=50 to n=10 with a rate �tot=10−4�. We also observe that
the parameter region, where cooling is achieved, is reduced
�recall that the initial phonon number here considered is np
=50�. Optimal cooling is obtained for values of the detuning
� on the order of �d. Indeed, a simple calculation of the
average phonon number, taking �d��, �R, and Tc, shows
that this is modified according to the formula

n̄0� �
�d

2 + �2

2��
, �40�

which reaches the minimal value n̄0���d /� at �=�d. Corre-
spondingly, the cooling rate is larger when ���R and scales
with �0�
2Tc

2 / ��d
2��. The cooling rate hence increases with

the ratio between coherent tunneling and dephasing rate with
the upper bound �0�
2 /�. This cooling limit is reminiscent
of Doppler cooling of atoms in a dipolar transition with ef-
fective linewidth 2�d and recoil frequency �R�
2 /�, see
Refs. 45 and 46.

3. Cooling efficiency as a function of the incoherent
tunneling rates

So far we have assumed that injection rate into the DQD,
�L, is the largest parameter, while we took �R��. We now
study the cooling efficiency as a function of �L and �R. We
first focus on the situation in which �L is the largest param-
eter and consider the cooling rate as a function of �R, when
�d���R /2. Figure 4 displays the average excitation number
nSt and the cooling rate �tot as a function of �R, choosing Tc
and � so to optimize both parameters. One clearly observes
that optimal cooling is obtained at small values of �R while
the cooling rate vanishes at �R→0. The numerical simula-
tions show that the cooling efficiency has a maximum at �R
on the order of a fraction of the oscillator frequency � while
it decreases as �R is further increased. We note, however,
that phononic occupations n̄St�1 are still obtained for �R
��. The analytical results reproduce well the behavior at
larger values of �R, where one finds �0��R

−2. A significant
discrepancy between analytical and numerical results is ob-
served in the limit �R→0. Such discrepancy is well under-
stood, as in this regime the analytical treatment is invalid �as
it is based on the approximation, that the dynamics of tun-
neling exceeds the rate of electromechanical coupling�.

We have made further studies, considering the situation
when the value of �L is such that the corrections scaling with
1 /�L are not negligible, for instance, choosing �L=10�. In
this case, we observe a significant decrease in the cooling
efficiency. In particular, at lower values of Q the scheme
appears slightly more efficient when the resonator is coupled
to the left dot rather than to the right dot.

The dynamics is significantly modified, if one chooses �L
small and �R comparatively large, see Fig. 5. In this regime

FIG. 2. Contour plots of the average phonon number at steady
state n̄St, Eq. �36�, and of the cooling rate �tot, Eq. �34� as a function
of � and Tc, in absence of dephasing. The gray scale is such, that
the darkest �brightest� regions indicate the smallest �largest� values,
with the exception of the region labeled with “no steady state,”
where the resonator is heated by electromechanical processes. The
dashed line in the plots �b� and �d� indicates the curve �2+4Tc

2

=�2. The parameters are �L=100�, �R=0.2�, 
=0.1�, �d=0, and
	�a� and �b�
 �p=0 and 	�c� and �d�
 �p=10−5� with n̄p=50.

FIG. 3. Same as in Fig. 2 but taking Q=105 ��p=10−5�� and
n̄p=50 everywhere and finite dephasing rate: In �a� and �b�
�d=0.1� and �c� and �d� �d=5�.
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there is essentially no excess electron in the DQD at steady
state. While n̄0 can be very small, the cooling rate is gener-
ally very slow so that one obtains relatively large mean
phononic numbers at finite values of Q. In this case, a
slightly better cooling efficiency is found when the resonator
is coupled to the left dot, see Figs. 5�c� and 5�d�. We also
note an unexpected behavior: when the resonator is coupled
to the right dot, cooling is found for negative values of �, as
visible in Figs. 5�a� and 5�b� �hence, when the left dot is at
higher energy than the right dot�. This could be explained in
terms of interference effects in the electromechanical cou-
pling inside the DQD, analogously to the dynamics observed
in Ref. 44 and 47.

IV. DISCUSSION

The scheme here proposed shares several analogies with
laser cooling schemes of trapped ions, where the mechanical
effects of photon-atom interaction is used in order to prepare
the motion of trapped particles in the ground state of the

confining potential.45,46 It is interesting to draw more explicit
analogies, in order to evidentiate also the differences which
arise when electromechanical effects are used in place of
optomechanics.

A clear analogy between the two systems is found when
considering the mechanical forces exerted on the harmonic
oscillator. Indeed, the interaction Hamiltonian in Eq. �4� can
be mapped to the Hamiltonian, describing the mechanical
effects by photon scattering in the Lamb-Dicke regime, by
means of the unitary transformation48

S = ei
/��R��R�p̂ �41�

with p̂=i�a†−a� such that �̃=S†�S and the system operators
transform as

S†�0��R�S = �0��R�e−i
/�p̂,

S†aS = a −



�
�R��R� . �42�

In this reference frame the interaction Hamiltonian is given
by

HTe-ph = − Tc��L��R�e−i
/�p̂ + �R��L�ei
/�p̂� , �43�

which has the same form as the interaction between a mode
of the electromagnetic field and an atomic dipolar transition.
In particular, in the limit of large �L the state �0�, with no
excess electrons in the DQD, can be adiabatically eliminated,
and the DQD dynamics can be effectively described in the

�a�

0 1 2 3 4 5 6
0

0.5

1

1.5

�R �in units of Ω�

n S
t

�b�

0 1 2 3 4 5 6
10�4

10�2

100

�R �in units of Ω�

Γ t
ot
�i

n
un

its
of
Ω
�

FIG. 4. �a� Average excitation number n̄St and �b� cooling rate
�tot as a function of �R for �p=0. The solid �dash-dotted� curves are
found for �p=0 ��p=10−5�� by maximizing the values of �0 as a
function of � and Tc in Eqs. �35� and �36�. The other parameters are

=0.1�, �L=100�, �d=0, and n̄p=50. The dots and the crosses
correspond to �p=0 and �p=10−5�, respectively, and are extracted
from numerical simulation, where the evolution of the resonator
mean phonon number is calculated by numerical integration of mas-
ter Eq. �10�, for the same parameters as in the analytical case. The
cooling rate is then determined by fitting the curve of the numerical
integration with an exponential decay, minimizing the sum of the
squares of the offsets of the numerical points from the exponential
fit. The value of n̄St is extracted from the behavior of the curve at
sufficiently long evolution times. The dashed line in �b�, visible at
small �R, indicates the regime in which the analytical results are not
valid.

FIG. 5. Same as in Fig. 2, but when the injection rate into the
DQD is small, �L=0.1� and �R=10�, such that DQD is essentially
empty. The other parameters are �R=10�, 
=0.1�, �d=0.1�,
�p=10−5�, and n̄p=50. In �a� and �b� the resonator is coupled to the
right dot, whereas in �c� and �d� the resonator is coupled to the left
dot.
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Hilbert space spanned by the state �L� and �R�. In this regime,
the system is analog to a trapped two-level atom with line-
width �d�, cooled by a laser with Rabi frequency Tc and pos-
sessing a Lamb-Dicke parameter 
 /�.45,46 The dephasing
rate hence plays a similar role of the linewidth of the cooling
transition, setting the fundamental bound to the final tem-
perature one can achieve by means of electromechanical
forces in this setup. Drawing on this analogy, ground-state
cooling, as discussed in this paper, is a form of sideband
cooling for trapped ions, and it is possible provided that the
dephasing rate �d��. In that case, in this paper we show
how the parameters can be tuned in order to achieve the
largest ground-state occupation. Summarizing, efficient cool-
ing is obtained for large values of �L and small values of �R,
such that �R��. Large ground-state occupations are also
found when �R��. When �d��, it is generally not pos-
sible to reach large ground-state occupations even though
cooling can be performed which has analogous efficiency as
Doppler cooling.

Differing from photon scattering, in the case of electron
tunneling we do not have diffusion processes, which are oth-
erwise encountered when energy is dissipated by spontane-
ous emission in free space. For this reason, Eq. �38� has the
same form found in sideband cooling of trapped ions under
specific conditions, where diffusion due to photon scattering
is suppressed.43,47 The same equation �for other physical pa-
rameters� was derived in theoretical treatments of cooling of
nanomechanical resonators via photons,49–52 where the cool-
ing dynamics was mapped to sideband cooling of trapped
ions. In contrast with laser cooling of trapped ions, the pa-
rameters for which n̄0 is minimum do not coincide with the
ones, at which �0 is maximum, and optimal cooling is found
as a compromise between maximizing the optomechanical or
the electromechanical cooling rate, �0, and minimizing the
lower bound to the mean phonon value, n̄0, so to effectively
counteract the thermalization rate due to the coupling with
the external environment.

The parameters used for our results are consistent with
currently available experimental values. For a resonator fre-
quency of ��2�50 MHz �as, for example, in Ref. 1�, the
mean number of thermal phonon np=50 would correspond to
a temperature of 120 mK, which is on the order of tempera-
tures reached in cryogenic environments.2 The frequency dif-
ference � and the tunneling rates Tc, �L, and �R, can be
controlled by the external gates,53 and can be tuned over
several order of magnitude. Regarding the quality factor,

Carbon-nanotube resonators with Q larger than 105 have
been recently reported in Ref. 20. To provide an example, for

=2�5 MHz, Tc=2�30 MHz, �=2�80 MHz, �R
�10 MHz, and �L�10 GHz, the resonator can be cooled
from n̄p=50 �T=120 mK� to n̄St=0.05 �T=0.8 mK�, pro-
vided that �d��R. The experimental value of the dephasing
rate of nanotubes is currently unknown.

V. CONCLUSIONS

We have presented an extensive analysis of the efficiency
of ground-state cooling of the phononic mode of a resonator,
constituted by a suspended carbon nanotube in a double
quantum-dot configuration. The analysis takes into account
dephasing in the current through the double dot and the finite
Q of the resonator. Ground-state cooling is possible provided
that the dephasing rate is smaller than the resonator fre-
quency. Moreover, largest efficiency is obtained when the
permanence time scale of the excess electron inside the
double dot exceeds the time scale in which the double dot
has no excess electron. When the dephasing rate is larger
than the resonator frequency, the resonator can be still cooled
provided that the tunable system parameters are accordingly
chosen.

Most parameters of the proposed setup can be tuned. The
frequency � of the resonator, for instance, depends on the
length of the nanotube section that is suspended. The fre-
quency difference � and the tunneling rates Tc, �L, and �R,
can be controlled by the external gates.53 Electron dephasing
rate, however, remains to be measured in nanotubes. We re-
mark that the proposed cooling scheme can be applied to
other device layouts, such as mechanical resonators electro-
statically coupled to fixed DQDs.18

ACKNOWLEDGMENTS

We are grateful to Cecilia Lopez for discussions. We ac-
knowledge support by the European Commission �EURYI;
Grants No. EMALI MRTN-CT-2006-035369 and No. FP6-
IST-021285-2�, by the ESF �EUROQUAM, CMMC�, and by
the Spanish Ministerio de Ciencia y Innovación �QOIT,
Consolider-Ingenio 2010; QNLP, Grant No. FIS2007-66944;
Ramon-y-Cajal; Juan-de-la- Cierva�. G.M. acknowledges the
German Research Council �DFG� for support �Heisenberg-
professorship program�.

1 B. Lassagne, Y. Tarakanov, J. Kiranet, D. Garcia-Sanchez, and
A. Bachtold, Science 325, 1107 �2009�.

2 G. A. Steele, A. K. Hüttel, B. Witkamp, M. Poot, H. B. Meer-
waldt, L. P. Kouwenhoven, and H. S. J. van der Zant, Science
325, 1103 �2009�.

3 K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys.
Lett. 84, 4469 �2004�; Y. T. Yang, C. Callegari, X. L. Feng, K.
L. Ekinci, M. L. Roukes, Nano Lett. 6, 583 �2006�.

4 K. Jensen, Kwanpyo Kim, and A. Zettl, Nat. Nanotechnol. 3,

533 �2008�.
5 B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold,

Nano Lett. 8, 3735 �2008�.
6 H.-Y. Chiu, P. Hung, H. W. Ch Postma, and M. Bockrath, Nano

Lett. 8, 4342 �2008�.
7 M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science

304, 74 �2004�.
8 D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature

�London� 430, 329 �2004�.

ZIPPILLI, BACHTOLD, AND MORIGI PHYSICAL REVIEW B 81, 205408 �2010�

205408-8

http://dx.doi.org/10.1126/science.1174290
http://dx.doi.org/10.1126/science.1176076
http://dx.doi.org/10.1126/science.1176076
http://dx.doi.org/10.1063/1.1755417
http://dx.doi.org/10.1063/1.1755417
http://dx.doi.org/10.1021/nl052134m
http://dx.doi.org/10.1038/nnano.2008.200
http://dx.doi.org/10.1038/nnano.2008.200
http://dx.doi.org/10.1021/nl801982v
http://dx.doi.org/10.1021/nl802181c
http://dx.doi.org/10.1021/nl802181c
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1038/nature02658
http://dx.doi.org/10.1038/nature02658


9 K. C. Schwab and M. L. Roukes, Phys. Today 58�7�, 36 �2005�.
10 I. Martin, A. Shnirman, L. Tian, and P. Zoller, Phys. Rev. B 69,

125339 �2004�.
11 D. Mozyrsky and I. Martin, Phys. Rev. Lett. 89, 018301 �2002�.
12 A. D. Armour, M. P. Blencowe, and Y. Zhang, Phys. Rev. B 69,

125313 �2004�; M. P. Blencowe, J. Imbers, and A. D. Armour,
New J. Phys. 7, 236 �2005�.

13 A. A. Clerk and S. Bennett, New J. Phys. 7, 238 �2005�.
14 F. Pistolesi, J. Low Temp. Phys. 154, 199 �2009�.
15 S. H. Ouyang, J. Q. You, and F. Nori, Phys. Rev. B 79, 075304

�2009�.
16 S. Ouyang, C. Lam, and J. You, arXiv:1001.1286 �unpublished�.
17 G. Sonne, M. Pea-Aza, L. Gorelik, R. Shekhter, and M. Jonson,

arXiv:1002.1207 �unpublished�.
18 A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M.

P. Blencowe, and K. C. Schwab, Nature �London� 443, 193
�2006�.

19 M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M.
L. Roukes, Nature �London� 459, 960 �2009�.

20 A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwen-
hoven, and H. S. J. van der Zant, Nano Lett. 9, 2547 �2009�.

21 S. Zippilli, G. Morigi, and A. Bachtold, Phys. Rev. Lett. 102,
096804 �2009�.

22 A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J.
Kippenberg, Nat. Phys. 4, 415 �2008�.

23 S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.
B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A.
Zeilinger, Nature �London� 444, 67 �2006�.

24 O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A.
Heidmann, Nature �London� 444, 71 �2006�.

25 D. Kleckner and D. Bouwmeester, Nature �London� 444, 75
�2006�.

26 J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, Phys.
Rev. Lett. 101, 197203 �2008�.

27 A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J.
Kippenberg, Nat. Phys. 5, 509 �2009�.

28 Y.-S. Park and H. Wang, Nat. Phys. 5, 489 �2009�.
29 S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S.

Gigan, K. C. Schwab, and M. Aspelmeyer, Nat. Phys. 5, 485
�2009�.

30 T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A.
Clerk, and K. C. Schwab, Nature �London� 463, 72 �2010�.

31 I. Wilson-Rae, C. Galland, W. Zwerger, and A. Imamoglu,
arXiv:0911.1330 �unpublished�.

32 A. D. Armour, M. P. Blencowe, and K. C. Schwab, Phys. Rev.
Lett. 88, 148301 �2002�.

33 P. Rabl, A. Shnirman, and P. Zoller, Phys. Rev. B 70, 205304
�2004�.

34 N. Mason, M. J. Biercuk, and C. M. Marcus, Science 303, 655
�2004�; M. J. Biercuk, S. Garaj, N. Mason, J. M. Chow, and C.
M. Marcus, Nano Lett. 5, 1267 �2005�; H. O. H. Churchill, A. J.
Bestwick, J. W. Harlow, F. Kuemmeth, D. Marcos, C. H. Stw-
ertka, S. K. Watson, and C. M. Marcus, Nat. Phys. 5, 321
�2009�; H. O. H. Churchill, F. Kuemmeth, J. W. Harlow, A. J.
Bestwick, E. I. Rashba, K. Flensberg, C. H. Stwertka, T. Tay-
chatanapat, S. K. Watson, and C. M. Marcus, Phys. Rev. Lett.
102, 166802 �2009�.

35 S. Sapmaz, C. Meyer, P. Beliczynski, P. Jarillo-Herrero, and L. P.
Kouwenhoven, Nano Lett. 6, 1350 �2006�; G. A. Steele, G.
Gotz, and L. P. Kouwenhoven, Nat. Nanotechnol. 4, 363 �2009�.

36 M. R. Gräber, W. A. Coish, C. Hoffmann, M. Weiss, J. Furer, S.
Oberholzer, D. Loss, and C. Schönenberger, Phys. Rev. B 74,
075427 �2006�.

37 H. I. Jørgensen, K. Grove-Rasmussen, J. R. Hauptmann, and P.
E. Lindelof, Appl. Phys. Lett. 89, 232113 �2006�; H. I. Jør-
gensen, K. Grove-Rasmussen, K.-Y. Wang, A. M. Blackburn, K.
Flensberg, P. E. Lindelof, and D. A. Williams, Nat. Phys. 4, 536
�2008�.

38 T. Brandes, Phys. Rep. 408, 315 �2005�.
39 T. H. Stoof and Yu. V. Nazarov, Phys. Rev. B 53, 1050 �1996�.
40 W. G. van der Wiel, S. de Francheschi, J. M. Elzermann, T.

Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys.
75, 1 �2002�.

41 T. Brandes and N. Lambert, Phys. Rev. B 67, 125323 �2003�.
42 L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 �1998�.
43 J. I. Cirac, R. Blatt, P. Zoller, and W. D. Phillips, Phys. Rev. A

46, 2668 �1992�.
44 G. Morigi, Phys. Rev. A 67, 033402 �2003�.
45 S. Stenholm, Rev. Mod. Phys. 58, 699 �1986�.
46 J. Eschner, G. Morigi, F. Schmidt-Kaler, and R. Blatt, J. Opt.

Soc. Am. B 20, 1003 �2003�.
47 S. Zippilli and G. Morigi, Phys. Rev. Lett. 95, 143001 �2005�;

Phys. Rev. A 72, 053408 �2005�.
48 I. Wilson-Rae, P. Zoller, and A. Imamoglu, Phys. Rev. Lett. 92,

075507 �2004�.
49 I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg,

Phys. Rev. Lett. 99, 093901 �2007�.
50 F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys.

Rev. Lett. 99, 093902 �2007�.
51 C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer,

Phys. Rev. A 77, 033804 �2008�.
52 I. Wilson-Rae, N. Nooshi, J. Dobrindt, T. J. Kippenberg, and W.

Zwerger, New J. Phys. 10, 095007 �2008�.
53 G. Gotz, G. A. Steele, W.-J. Vos, and L. P. Kouwenhoven, Nano

Lett. 8, 4039 �2008�.

GROUND-STATE-COOLING VIBRATIONS OF SUSPENDED… PHYSICAL REVIEW B 81, 205408 �2010�

205408-9

http://dx.doi.org/10.1063/1.2012461
http://dx.doi.org/10.1103/PhysRevB.69.125339
http://dx.doi.org/10.1103/PhysRevB.69.125339
http://dx.doi.org/10.1103/PhysRevLett.89.018301
http://dx.doi.org/10.1103/PhysRevB.69.125313
http://dx.doi.org/10.1103/PhysRevB.69.125313
http://dx.doi.org/10.1088/1367-2630/7/1/236
http://dx.doi.org/10.1088/1367-2630/7/1/238
http://dx.doi.org/10.1007/s10909-009-9867-1
http://dx.doi.org/10.1103/PhysRevB.79.075304
http://dx.doi.org/10.1103/PhysRevB.79.075304
http://arXiv.org/abs/arXiv:1001.1286
http://arXiv.org/abs/arXiv:1002.1207
http://dx.doi.org/10.1038/nature05027
http://dx.doi.org/10.1038/nature05027
http://dx.doi.org/10.1038/nature08093
http://dx.doi.org/10.1021/nl900612h
http://dx.doi.org/10.1103/PhysRevLett.102.096804
http://dx.doi.org/10.1103/PhysRevLett.102.096804
http://dx.doi.org/10.1038/nphys939
http://dx.doi.org/10.1038/nature05273
http://dx.doi.org/10.1038/nature05244
http://dx.doi.org/10.1038/nature05231
http://dx.doi.org/10.1038/nature05231
http://dx.doi.org/10.1103/PhysRevLett.101.197203
http://dx.doi.org/10.1103/PhysRevLett.101.197203
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1038/nphys1303
http://dx.doi.org/10.1038/nphys1301
http://dx.doi.org/10.1038/nphys1301
http://dx.doi.org/10.1038/nature08681
http://arXiv.org/abs/arXiv:0911.1330
http://dx.doi.org/10.1103/PhysRevLett.88.148301
http://dx.doi.org/10.1103/PhysRevLett.88.148301
http://dx.doi.org/10.1103/PhysRevB.70.205304
http://dx.doi.org/10.1103/PhysRevB.70.205304
http://dx.doi.org/10.1126/science.1093605
http://dx.doi.org/10.1126/science.1093605
http://dx.doi.org/10.1021/nl050364v
http://dx.doi.org/10.1038/nphys1247
http://dx.doi.org/10.1038/nphys1247
http://dx.doi.org/10.1103/PhysRevLett.102.166802
http://dx.doi.org/10.1103/PhysRevLett.102.166802
http://dx.doi.org/10.1021/nl052498e
http://dx.doi.org/10.1038/nnano.2009.71
http://dx.doi.org/10.1103/PhysRevB.74.075427
http://dx.doi.org/10.1103/PhysRevB.74.075427
http://dx.doi.org/10.1063/1.2402887
http://dx.doi.org/10.1038/nphys987
http://dx.doi.org/10.1038/nphys987
http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/10.1103/PhysRevB.53.1050
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/PhysRevB.67.125323
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.46.2668
http://dx.doi.org/10.1103/PhysRevA.46.2668
http://dx.doi.org/10.1103/PhysRevA.67.033402
http://dx.doi.org/10.1103/RevModPhys.58.699
http://dx.doi.org/10.1364/JOSAB.20.001003
http://dx.doi.org/10.1364/JOSAB.20.001003
http://dx.doi.org/10.1103/PhysRevLett.95.143001
http://dx.doi.org/10.1103/PhysRevA.72.053408
http://dx.doi.org/10.1103/PhysRevLett.92.075507
http://dx.doi.org/10.1103/PhysRevLett.92.075507
http://dx.doi.org/10.1103/PhysRevLett.99.093901
http://dx.doi.org/10.1103/PhysRevLett.99.093902
http://dx.doi.org/10.1103/PhysRevLett.99.093902
http://dx.doi.org/10.1103/PhysRevA.77.033804
http://dx.doi.org/10.1088/1367-2630/10/9/095007
http://dx.doi.org/10.1021/nl802892q
http://dx.doi.org/10.1021/nl802892q

