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Carbon nanotubes allow the fabrication of nanoelectrome-
chanical resonators with outstanding properties. The reso-

nance frequency can be very high1 and at the same time widely
tunable.2,3 In addition, nanotube resonators are very sensitive to
electron charges,4,5 to mass,6�8 and to force.9 A major issue in
these experiments is the detection of the motion. The difficulty
lies in transducing the high-frequency subnanometer amplitude
of the motion into a sizable electrical signal. This is especially true
for ultrasensitive force sensing experiments where the transduc-
tion has to be as efficient as possible. Usually, the mechanical
motion is directly converted into a voltage which subsequently
undergoes amplification with high gain. A strategy to improve the
detection sensitivity is to preamplify the motional amplitude
before the electrical conversion using the parametric effect.10

Parametric amplification in mechanical resonators has been
intensively studied.10�22 It not only is employed to amplify
mechanical signals but also allows for the enhancement of the
quality factor,13,17,22 the storage and the operation of mechanical
bits,16 thermal noise squeezing,10,20,21 and the reduction of the
parasitic signal in capacitive detection schemes.11 In its most
conventional form, parametric amplification consists of modulat-
ing the resonator spring constant k0 at twice the resonant
frequency f0.

23 This is achieved in many NEMS resonators by
tuning k0 electrostatically with a voltage Vg applied on a nearby
gate. Nanotube resonators are expected to be excellent candidates
for parametric amplification because k0 can be modulated with Vg
by a very large amount: the modulation can bemade larger than in
any other mechanical resonators fabricated to date (this can be
quantified by measuring the Vg dependence of the resonance
frequency, which scales as (k0)

1/2). However, parametric amplifi-
cation in a nanotube resonator could not be realized thus far. One

reason for this is that the employed transduction schemes3,24 are
not suitable for such measurements (see below).

Here, we report on a new version of themixing technique3 that
detects the two quadratures of the motion of a nanotube
resonator. This allows us to study the parametric amplification
of themotion and to demonstrate a gain as high as 18.2 dB.When
k0 is modulated above a threshold value, the nanotube is shown
to enter a regime of instability and self-oscillation; that is, the
nanotube oscillates even though the driving force is set to zero.

Our nanoresonators consist of a suspended carbon nanotube
clamped between two metal electrodes (Figure 1a) and are
fabricated as follows: a trench is etched into a highly resistive
Si wafer coated with SiO2 and Si3N4, and W and Pt are
evaporated into the trench to create a gate electrode. In a second
lithography step, a continuous line is exposed across the trench.
After deposition ofW/Pt and lift-off, the line results in the source
and drain electrodes separated by the trench (these electrodes
are electrically isolated from the gate due to the undercut profile
of the Si3N4/SiO2 substrate). An island of catalyst is patterned on
the drain (or source) electrode using electron-beam lithography,
and nanotubes are grown by chemical vapor deposition. This
growth is the last step of the fabrication process, and therefore the
nanotubes are not contaminated with residues of the resists and
chemicals.25�27

The nanoresonator is actuated by applying a voltage Vg
AC at

frequency f to the gate, which causes a driving force F� Vg
AC. The

resulting motion is detected by applying a voltage Vsd
AC at a
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ABSTRACT:A hallmark of mechanical resonators made from a
single nanotube is that the resonance frequency can be widely
tuned. Here, we take advantage of this property to realize
parametric amplification and self-oscillation. The gain of the
parametric amplification can be as high as 18.2 dB and tends to
saturate at high parametric pumping due to nonlinear damping.
These measurements allow us to determine the coefficient of
the linear damping force. The corresponding damping rate is
lower than the one obtained from the line shape of the
resonance (without pumping), supporting the recently reported scenario that describes damping in nanotube resonators by a
nonlinear force. The possibility to combine nanotube resonant mechanics and parametric amplification holds promise for future
ultralow force sensing experiments.
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slightly detuned frequency (f � δf) to the source electrode, and
by measuring the mixing current Imix at frequency δf from the
drain electrode using a lock-in amplifier. In previous works,3,4,6,7

the recorded signal was the modulus of Imix, which reads

Imix ¼ 1
2
VAC
sd

DG
DVg

VAC
g cosð2πδft �jEÞ þ z0V

DC
g

C0
g

Cg
cosð2πδft � jE � jMÞ

 !

ð1Þ

Here, z0 is the motional amplitude, ∂G/∂Vg the transconduc-
tance, t the time, Vg

DC the constant voltage applied to the gate, Cg

the gate�nanotube capacitance, and C0
g its derivative with

respect to the displacement. The phase jM is the phase
difference between the displacement and the driving force, and
jE is the phase difference between the Vsd

AC and Vg
ACsignals. In

practice,jE is difficult to control (it depends on the details of the
measurement circuit such as the cable lengths). Because two
phases are at work, the measurement of the modulus of Imix is not
convenient to extract z0. Moreover, we find that jE can change
with the power of the applied oscillating voltages, which is not
suitable for the study of parametric amplification. Other versions
of the mixing technique are not appropriate for such a study
either. In the frequency-modulation technique,24 Imix is propor-
tional to the derivative of z0 with respect to f. In the amplitude-
modulation technique,28 Imix does not measure z0 at f0 (since Imix

depends only on Re[~z(f)]).

We revisit the mixing technique to measure the two quad-
ratures of the motion, Re[~z(f)] and Im[~z(f)].When actuating the
resonator with an oscillating force at frequency f, the displace-
ment can be written as z = Re[~z(f)] cos(2πft) þ Im[~z(f)]
sin(2πft) and Imix can take the form (see Supporting In-
formation)

Imix ¼ 1
2
VAC
sd

DG
DVg

VAC
g cosð2πδft � jEÞ þ VDC

g

C0
g

Cg
Re½~zðf Þ� cosð2πδft � jEÞ

 

þ VDC
g

C0
g

Cg
Im½~zðf Þ� sinð2πδft � jEÞ

�
ð2Þ

For a properly tuned phase of the lock-in amplifier, the out-of-
phase component of the lock-in amplifier output, Y, corresponds
to the imaginary part of the resonance (third term in eq 2) and
the in-phase component, X, to the real part of the resonance
(second term in eq 2) added to a constant background which has
a purely electrical origin (first term in eq 2). In order to find this
phase, we choose a driving frequency far from f0 and tune the
phase of the lock-in amplifier until the measured out-of-phase
component is zero. Figure 1b shows the two quadratures of Imix
when sweeping f. The red line is a fit with eq 2 of the
measurements assuming that the resonator is described as a
damped harmonic oscillator. At the resonance frequency, Y is
directly proportional to the amplitude of motion (z0 = Im[~z(f0)]
and Re[~z(f0)] = 0), which is very practical to study parametric
amplification.

Before discussing parametric amplification, we characterize
theVg

DC dependence of k0. For this, wemeasure f0 as a function of
Vg
DC (since k0 � f0

2). Figure 1c shows two clearly resolved
resonant modes. Their resonance frequency can be tuned to a
large extent with Vg

DC. This behavior has been attributed to the
increase of the elastic tension that builds up in the nanotube as it
bends toward the gate with increasing Vg

DC.3 For the lower
frequency mode, df0/dVg is constant to a good accuracy over
several volts and equal to 4.9MHz/V. Compared to other NEMS
resonators, this response is exceptionally high. Previous studies
attained up to df0/dVg = 2 kHz/V with capacitive forces,10,13

240 kHz/V using the Lorentz force,19 up to 40 kHz/V for
piezoelectric NEMSs,16,17,21,22 and 10 kHz/V using a dielectric
force setup.18 Recently, df0/dVg = 1.1 MHz/V was obtained by
coupling a resonator to a Cooper pair box at very low tempera-
ture (130 mK).20 The high values of df0/dVg achieved in
nanotube resonators (up to 10 MHz/V at room temperature
in ref 3) makes them excellent candidates for parametric
amplification.

In order to realize parametric amplification, we apply an
additional oscillating voltage VP at a frequency 2f to the gate.
On resonance, this modulates k0 at 2f0, thereby achieving
parametric pumping of the resonator. We measure the
resulting amplification of z0 by comparing Ypumped to the
unpumped signal Yunpumped. Figure 2a shows that the me-
chanical amplification Λ = Ypumped/Yunpumped depends on
the phase Δφ of the driving force with respect to the pump
excitation. The maximum amplification is achieved at about
Δφ =�45�. We plot the gain corresponding to the amplifica-
tion at this phase as a function of VP in Figure 2b. The largest
gain is 18.2 dB and is obtained for VP = 11.5 mV. Beyond this
pumping voltage, we find that the signal becomes highly
unstable.

We analyze our data in the framework of the parametric
excitation of a damped resonator. From ref 23, we find that the

Figure 1. (a) Schematic diagram and false-color scanning electron
microscopy (SEM) image of the device. The nanotube (arrows, dashed
line in the SEM image) is suspended over a gate electrode (red) between
two metal electrodes (gray). The distance between the electrodes is 1
μm. All measurements are performed in an ultrahigh vacuum chamber
(about 10�10 mbar) at 100 K (in order to avoid the interplay between
parametric amplification andCoulomb blockade which emerges at lower
temperature). (b) In-phase component X and out-of-phase component
Y of Imix (without parametric pumping). The motional amplitude at the
resonance frequency is proportional to Y. Red lines are fits using the real
and imaginary parts of a Lorentzian. Vg

AC = 5 mV, Vsd
AC = 1.4 mV. We

estimate the motion amplitude to be ∼2 nm by comparing the on-
resonance signal of Y with the off-resonance signal of X in conjunction
with eq 2 as in ref 3. In comparison, the amplitude of the thermal motion
is (kBT/m(2πf0)

2)1/2 = 1.4 nm (kB is the Boltzmann constant and we
take m = 7 � 10�21 kg the mass of the suspended nanotube). (c)
Resonance frequency as a function of gate voltage (from measuring Imix

versus f and Vg
DC). Two mechanical modes can be seen. All results that

follow are obtained for Vg
DC = �1.5 V and f ∼ 50 MHz.
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amplification is

Λ ¼
�����Im �eiπ=4

cosðΔφþ π=4Þ
1� VP=VP, C

þ i
sinðΔφþ π=4Þ
1þ VP=VP, C

 !" #�����
ð3Þ

Here, VP,C is the critical pumping voltage for which the
amplification is expected to diverge (VP,C = (f0 dVg/df0)/Q0

with Q0 the quality factor associated to the damping force γ_z,
where _z is the velocity). We compare the measurements to eq 3
using VP,C as a fitting parameter (Figure 2a, solid red line). The
agreement is reasonable and we obtainVP,C = 12.5 mV. (We note
that the linear model used for eq 3 is not strictly valid for large VP,
see below.)

Regarding the VP dependence of the amplification in
Figure 2b, the measured amplification tends to saturate at high
VP. This is in opposition to the divergent growth expected from
eq 3, which assumes that damping is described by the linear force
γ_z. According to the theory of parametric amplification,23 the
saturation can be accounted for by adding a nonlinear damping
force ηz2 _z to the Newton equation of a harmonic oscillator. This
force leads to saturation because the associated energy dissipa-
tion depends on the amplitude, i.e., higher amplitudes corre-
spond to higher loss of energy. This nonlinear damping force,
which naturally emerges from a nonlinear Caldeira�Leggett
model,29 has recently been shown to be crucial to explain the
measured driven resonances of nanotube resonators9 (more
discussion on this force can be found below). Following previous
work20,23 the saturation can be quantified by finding the solution
Λ of the equation

VP ¼ uΛ2 � v
Λ
þ VP, C ð4Þ

Here

u ¼ πηQ0f0VP, C

k0
Im½~zðωÞ�2unpumped

and

v ¼ Q0FVP, Cffiffiffi
2

p
k0Im½~zðωÞ�unpumped

where F denotes the driving force. The measurements are
compared to the solution of eq 4 using u, v, and VP,C as fitting
parameters (solid red line in Figure 2b). The agreement is good
and we obtain VP,C = 7.5 mV, which is rather similar to the value
found above.

With increase in the pump excitation, the nanotube is
observed to self-oscillate (Figure 3). That is, the nanotube
resonator enters in a regime where it vibrates without any
driving force: an immobile resonator is expected to be instable
when parametrically pumped with a voltage above VP,C, and any
fluctuation will activate the oscillating motion.23 In the mea-
surements, we set F = 0 (by putting the oscillating voltage Vg

AC

at frequency f to zero) and we measure the mixing current as a
function of VP and pump frequency. Figure 3a shows mechan-
ical motion in a tongue-shaped region, which is a typical
signature of self-oscillation.11,15,16,20,22,23 When the pump
frequency sweeps in the opposite direction, the measurement
is different (Figure 3b); the hysteresis is attributed to a
(negative) Duffing force.16 In both sweep directions, self-
oscillation is observed for VP roughly above VP,C = 10 mV.
On a technical note, the motion is detected because we apply
the voltage Vsd

AC at frequency (f � δf) with δf = 10 kHz.
Although δf is lower than the resonance width (about 150 kHz
at low drive, see below), it is unlikely that the voltage Vsd

AC with
frequency f � δf affects the measurements in Figure 3 for the
following reasons: first, Vsd

AC is low (1.4 mV) and the corre-
sponding force is not enough to actuate the resonator in a
detectable way (the resonance is detected when the drive is
equal to or larger than 3 mV). Second, the nanotube resonator
behaves as expected in the self-oscillation regime. Namely, we
observe no mixing current when the pumping voltage is below
the threshold value VP,C and, in addition, the region in which we
detect motion has the tongue-shape characteristic of parametric
self-oscillation.

In these measurements of parametric amplification and self-
oscillation, we obtain three individual estimations of VP,C that are
rather similar (about 10 mV). Using Q0 = (f0 ∂Vg/∂f0)/VP,C this
corresponds to a quality factor of about 1000. Surprisingly, this is
significantly larger than the quality factor obtained when the
pump is off (e.g., in Figure 1b where the quality factor is extracted
by comparing the resonance line shape with the predictions of a

Figure 2. (a) Amplification (Λ = Ypumped/Yunpumped) as a function of
the phase differenceΔφ between the driving force and the pump forVP =
11.5mV (solid dots) andVP = 0 (hollow squares).Vg

AC = 3mV andVsd
AC =

1.4mV. The solid red line is a fit with eq 3. The dashed red line is themean
value when the pump is off. Our measurement setup can only control the
shift of Δφ; we have determined Δφ = 0 from optimizing the agreement
between experiment and theory. (b) Gain as a function of the amplitude of
VP for Δφ at which the amplification is largest. The solid red line is a fit
with eq 4. Vg

AC = 3 mV and Vsd
AC = 1.4 mV. We estimate the motion

amplitude to be ∼10 nm at the largest gain.

Figure 3. Parametric self-oscillation (blue) when the pumping frequency
is swept upward (a) and downward (b) (bymeasuring Imix as a function of
the detection frequency f andVP). The driving force at frequency f is set to
zero. The observed hysteresis is due to a (negative) Duffing force. In these
frequency sweeps, the phase difference between VP and Vsd

AC is not kept
fixed so the measured Imix is fluctuating. Vsd

AC = 1.4 mV.
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damped harmonic oscillator). There, the quality factor is about
170�350 (crosses in Figure 4a). Measurements on a second
resonator give the same results (see Supporting Information).
We attribute this difference to the different damping forces that
are at work: γ _z and ηz2 _z. The experiments on parametric
amplification and self-oscillation are sensitive to the critical
pump excitation VP,C, which is a direct measure of γ. However,
VP,C does not necessarily quantify the total damping in the
resonator. Indeed, we recently showed9 that the principal
contribution to the damping in a nanotube resonator can stem
from the ηz2 _z force. In this case, the quality factor Q estimated
from the resonance line shape is lower than Q0 = k0/2πf0γ
obtained from VP,C, which is in agreement with our findings. In
the following, we give further experimental evidence that the
damping in the studied resonator indeed emanates from the
ηz2 _z force. Panels b and c of Figure 4 show that the measured
resonance line shape compares reasonably well with the pre-
dictions of a Duffing resonator with nonlinear damping, the

equation of motion being described by9

mz€ ¼ � k0z� γ_z� Rz3 � ηz2 _zþ F cosð2πftÞ ð5Þ

The whole set of resonance lineshapes measured at different
driving forces can be fitted with a single value for R and η. The
corresponding value of Q depends on the driving force (squares
in Figure 4a), which signals that the damping is nonlinear, as
demonstrated in ref 9.

An important step forward would be to optimize nanotube
resonators in order to further enhance the parametric gain. Since
the theory of parametric amplification predicts that the gain is
limited by nonlinear damping,23 methods to reduce this non-
linear damping force should be developed. This is of primary
importance since the same nonlinear damping also sets the
quality factor of driven nanotube resonators.9 The microscopic
origin of the nonlinear damping is not clear, but it could be
related to phonon tunneling, sliding at the contacts, nonlinea-
rities in phonon�phonon interactions, or contamination in
combination with geometrical nonlinearities.9 We will experi-
mentally study the dependence of the nonlinear damping force
on contamination, the clamping configuration, and the sus-
pended length. Theoretical work on the microscopic nature of
nonlinear damping will prove useful.29,30

In conclusion, we demonstrate parametric amplification and
self-oscillation in a carbon nanotube resonator. Our results hold
promise for ultralow force sensing experiments. We recently
demonstrated a force sensitivity of 2.5 aN 3Hz

�1/2 with a
nanotube resonator (without parametric amplification)9 and if
it were possible to achieve with this resonator the same gain as
reported in the present work, this would surpass the record force
sensitivity of 0.51 aN 3Hz

�1/2 recently demonstrated in ref 31.
Moreover, nanotube mechanical resonators are promising sys-
tems for future studies of the interplay between parametric
amplification and Coulomb blockade.32
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