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We report on the nonlinear coupling between the mechanical modes of a nanotube resonator. The

coupling is revealed in a pump-probe experiment where a mode driven by a pump force is shown to

modify the motion of a second mode measured with a probe force. In a second series of experiments, we

actuate the resonator with only one oscillating force. Mechanical resonances feature exotic line shapes

with reproducible dips, peaks, and jumps when the measured mode is commensurate with another mode

with a frequency ratio of either 2 or 3. Conventional line shapes are recovered by detuning the frequency

ratio using the voltage on a nearby gate electrode. The exotic line shapes are attributed to strong coupling

between the mechanical modes. The possibility to control the strength of the coupling with the gate

voltage holds promise for various experiments, such as quantum manipulation, mechanical signal

processing, and the study of the quantum-to-classical transition.
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The nonlinear nature of mode coupling lies at the origin
of a wide variety of phenomena [1–12], including mechani-
cal synchronization, mechanically induced transparency,
and vibration localization. In the case that two modes
operate at well separated frequencies, the effect of the
coupling is usually modest, and the oscillators move es-
sentially in an independent manner. The coupling between
two modes is expected to become strong when the ratio
between their resonance frequencies is an integer n [13].
Perturbation theory then predicts that the motion of one
oscillator strongly affects the motion of the other oscillator,
and vice versa, through nonlinear forces for which the
order of the nonlinearity is n. Moreover, the resonance
line shapes are expected to be peculiar [13]. Strong cou-
pling, also called internal resonance, has not been observed
in nanomechanical resonators thus far, because the ratio
between the resonance frequencies is usually not an
integer.

Resonators based on carbon nanotubes [14–16] provide a
unique platform to test mechanics at the nanoscale. A nano-
tube behaves like a semiflexible polymer in the sense that it
can bend and stretch to large extents [17]. Consequently,
nonlinearities in nanotube resonators are important and
result in unusual behaviors [18–20]. In this work, we take
advantage of the mechanical flexibility of nanotubes to
achieve strong coupling between mechanical modes.
Indeed, the static shape of a nanotube can be deformed to
a large extent with the voltage applied on a gate electrode.
This enables us to tune the resonance frequencies [14,21] in
order to make two modes commensurate. In addition, the
oscillation is easily driven to large amplitudes [14] so that
nonlinear forces, including coupling forces, are sizable.

In this Letter, we study the line shape of mechanical
resonances as a function of gate voltage. Line shapes
become exotic, featuring reproducible dips, peaks, and

jumps, when the measured mode is commensurate with
another mode with a frequency ratio of either 2 or 3.
Conventional line shapes are recovered by detuning the
frequency ratio with the gate voltage. These results agree
with the predictions of strong coupling. The coupling is
attributed to motion-induced tension; that is, the oscillation
of one mode induces a mechanical tension in the resonator
that affects the dynamics of the other mode, and vice versa.
We employ conventional techniques for the fabrication

and the measurements of nanotube resonators. Figures 1(a)
and 1(b) show that the nanotube is contacted to two elec-
trodes and is suspended over a trench with a gate electrode
at the bottom. The nanotube is grown by chemical vapor
deposition in the last step of the fabrication process
in order to reduce contamination [22] (Supplemental
Material, Sec. I [23]). We check with a scanning electron
microscope that only one nanotube is suspended over the
trench. The mechanical motion is driven and detected by
using the two-source and the frequency-modulation (FM)
mixing methods. The two-source method [14], which en-
ables a direct measurement of the amplitude of the motion,
is used to record resonance line shapes, whereas the FM
method [24] is better at detecting small signals, so we
employ it to map resonance frequencies as a function of
gate voltage Vg (Supplemental Material, Sec. II [23]).

Measurements are performed between 60 and 70 K to
avoid Coulomb blockade at low temperature [15,16].
The nanotube resonator already begins to exhibit

Duffing nonlinearities at low driving force Fd [25].
Figures 1(c) and 1(e) show two resonance line shapes at
the lowest Fd for which we obtain a good signal-to-noise
ratio. The two resonances correspond to a single mode at
different values of Vg. The quality factors are 230 and 350

in Figs. 1(c) and 1(e), respectively. Upon doubling Fd, a
hysteresis emerges, marking the onset of the nonlinear
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regime [Figs. 1(d) and 1(f)]. An estimation of the
motional amplitude yields values between 1 and 9 nm in
Figs. 1(c)–1(f) (Supplemental Material, Sec. III [23]).
Interestingly, the asymmetry of the resonance is different
between Figs. 1(d) and 1(f), which indicates different
signs of the Duffing force. The sign change occurs around
Vg ¼ 1:9 V.

The resonance frequencies can be tuned with Vg by an

amount that is different for each mode [Figs. 2(a) and 2(b)].
The resonance frequency variation is attributed to the me-
chanical tension that builds up in the nanotube as it bends
towards the back gate upon increasing Vg [14,26]. The

amount of the variation depends on the shape and the direc-
tion of themode. Finite element simulations can qualitatively
reproduce the measured Vg dependences of the different

resonance frequencies [Fig. 2(c)] without any free para-
meters using the static shape of the nanotube imaged with a
scanning electron microscope (Supplemental Material,
Sec. VII [23]). These simulations show that the static defor-
mation of the nanotube towards the gate electrode is as large
as 50 nm for Vg ¼ 4 V [Fig. 2(d)]. For the simpler case of a

straight nanotube,we can describe theVg dependences of the

resonance frequencies in a satisfactory way using the Euler-
Bernoulli equation (Supplemental Material, Sec. VIII [23]);
the static deformation is 17 nm for Vg ¼ 4 V [Fig. 2(e)].

Coupling between the modes can be observed in a
pump-probe experiment [5]. Specifically, we apply a force
at frequency fprobe to probe one mode using the FM
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FIG. 2 (color online). Tuning resonance frequencies. (a) Map of resonance frequencies as a function of Vg (by measuring Imix as a
function of f and Vg for Vac ¼ 2 mV with the FM technique). We clearly discern three modes, while a fourth one is weaker and is

indicated by arrows. Color scale: 0 (black) to 0.1 nA (red). (b) Schematic of the map of resonance frequencies as a function of Vg. The

four modes are represented by plain lines and labeled M, N, O, and P. Dashed lines correspond to the resonance frequencies of these
modes multiplied by 2, 3, 1=2, or 1=3 (the values are indicated in the labels). Black arrows point to regions where line shapes are exotic
and two modes are commensurate. Gray arrows point to exotic line shape regions for which we cannot assign the coupled mode.
(c) Finite element simulation of the map of resonance frequencies as a function of Vg obtained with ANSYS. The dashed line

corresponds to a mode that we have not detected. The simulations show that this mode has one node (while the others have either zero
or two nodes) and thus cannot be detected due to symmetry reasons. Inset: Schematic of the static shape of the nanotube when
Vg ¼ 0 V. The deformation in the transverse direction is exaggerated with respect to the nanotube length. The largest deformation is

�40 nm (Supplemental Material, Sec. VII [23]). (d) Static displacement of the center of the resonator (zs) calculated with ANSYS using
the static shape of the nanotube (when Vg ¼ 0 V) depicted in the inset of (c). (e) zs calculated from the Euler-Bernoulli equation for a

straight nanotube (plain line). The dashed line corresponds to the result calculated with ANSYS for the same straight nanotube.
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FIG. 1 (color online). Device characterization. (a) Colored
scanning electron microscopy image of the device measured in
this work with source (S), drain (D), and gate (G) electrodes.
The nanotube position is represented by a dashed line, and the
clamping points are indicated by arrows. The suspended length
of the nanotube is 1:77 �m, and the depth of the trench is
370 nm. Scale bar: 600 nm. The image is recorded after the
measurements of the resonator. (b) Schematic side view of the
device. (c)–(f) Mechanical resonances for small and large driv-
ing forces obtained by measuring the mixing current (Imix) as a
function of the driving frequency (f) with the two-source
technique. The driving force is electrostatic and is proportional
to the oscillating voltage Vac applied to the gate electrode.
Vac ¼ 0:2 mV and Vg ¼ 1:5 V in (c); Vac ¼ 0:4 mV and

Vg ¼ 1:5 V in (d); Vac ¼ 0:2 mV and Vg ¼ 4 V in (e);

Vac ¼ 0:4 mV and Vg ¼ 4 V in (f). For the detection, we apply

an oscillating voltage (Vac
s ¼ 0:056 mV) to the source electrode.

Black (red) curves correspond to upward (downward) sweeps.
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method. The current of the probed mode is continuously
monitored while sweeping the frequency fpump of a second

force [Figs. 3(a) and 3(b)]. The sweep in fpump is repeated

for various values of Vg [Fig. 3(c)]. The current of the

probed mode is found to change when fpump matches the

resonance frequency (or the harmonic) of another mode
[by comparing Fig. 3(c) and Supplemental Material,
Fig. S3(a) [23]]. This unambiguously demonstrates that
the modes of our nanotube resonator are coupled.

When only one mode is actuated, we observe disconti-
nuities in maps of the resonance frequency as a function of
Vg [Figs. 4(e) and 4(f)]. The discontinuities are accompa-

nied by exotic resonance line shapes [Figs. 4(g)–4(j)].
These features often occur when the resonance frequency
of the measured mode is equal to that of another mode
multiplied by 2, 3, 1=2, or 1=3 [as indicated by the black
arrows in Fig. 2(b) [27]]. Upon detuning the frequency
ratio using Vg, conventional resonance line shapes are

recovered [Figs. 4(a) and 4(d)]. Another way to retrieve
regular line shapes is to reduce the driving force
(Supplemental Material, Sec. XIII [23]). We also observe
exotic line shapes [indicated by gray arrows in Fig. 2(b)]
without being able to identify the second mode; we specu-
late that the second mode is not detectable with the mixing
technique or that it oscillates in a frequency range that has
not been probed.

These experimental findings are consistent with the
theory of strong coupling between mechanical modes in
a resonator [13,28]. The observation that strong coupling

occurs for a frequency ratio of 2 or 3 implies that quadratic
and cubic nonlinear forces are important and that the
equation of motion for mode i is of the form

d2zi
dt2

¼ �!2
i zi � �

dzi
dt

� �2z
2
i � �3z

3
i �

X

j;k

�jkzjzk

� X

j;k;l

�jklzjzkzl þ g (1)

with zi the motional amplitude, t the time, !i the angular
resonance frequency, and g the effective force normalized
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FIG. 3 (color online). Mechanical coupling measured in a
pump-probe experiment. (a) Representation of the two drive
frequencies used in the pump-probe experiment. The pump force
is swept in frequency, whereas fprobe is set to match the reso-

nance frequency of the lowest mode (M). (b) Normalized mixing
current of the probed mode as a function of fpump at Vg ¼ 3:6 V

(measured with the FM technique). Before the scan, we set fprobe
so that the current is maximal (I0mix). We plot the measured

current divided by I0mix. The oscillating voltage of the pump is

5.6 mV, and the FM oscillating voltage of the probe is 2 mV.
(c) Normalized mixing current of the probed mode as a function
of fpump and Vg using the same parameters as in (b). The line

graph in (b) is marked with a dashed line. Color scale: Imix ¼ 0
(dark red) to Imix ¼ 1 (white).
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FIG. 4 (color online). Resonances when the measured mode
is commensurate or nearly commensurate with another mode.
(a)–(d) Resonance line shapes of one mode for different Vg

measured with the two-source technique. The driving voltage
applied to the gate electrode is Vac ¼ 1:1 mV, and the voltage
applied for the detection on the source electrode isVac

s ¼ 0:56 mV.
Black (red) curves correspond to upward (downward) sweeps.
Vg ¼ 2:4 V in (a); Vg ¼ 2:6 V in (b); Vg ¼ 2:8 V in (c);

Vg ¼ 3 V in (d). (e) Map of the resonance frequency as a

function of Vg (obtained by measuring Imix as a function of f

and Vg for Vac ¼ 1:1 mV and Vac
s ¼ 0:56 mV using the two-

source technique by increasing f). Color scale: 0 (black) to 1 nA
(red). (f) Map of the resonance frequency as a function of Vg

(obtained for Vac ¼ 1:1 mV and Vac
s ¼ 0:28 mV using the two-

source technique by decreasing f). Color scale: 0 (black) to
0.7 nA (red). (g)–(j) Resonance line shapes for different
modes and different values of Vg measured with the two-source

technique. Vac ¼ 1:1 mV, Vac
s ¼ 0:56 mV, and Vg ¼ 1:98 V

in (g). Vac ¼ 17 mV, Vac
s ¼ 1:1 mV, and Vg ¼ 3:41 V in (h).

Vac ¼ 1:7 mV, Vac
s ¼ 0:28 mV, and Vg ¼ 1:86 V in (i).

Vac ¼ 5:6 mV, Vac
s ¼ 0:56 mV, and Vg ¼ 3:6 V in (g).
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by the mass [13]; �, �2, �3, �jk, and �jkl are various

constants. We omit the nonlinear damping force for
simplicity [18]. Mode i couples to modes j, k, and l
through the forces zjzk and zjzkzl (Supplemental

Material, Sec. IX [23]).
Quadratic and cubic nonlinear forces (z2i , z

3
i , zjzk, and

zjzkzl) naturally emerge from the tension in the beam that

is induced by motion—the beam is stretched and com-
pressed periodically in time, because it is clamped at
both ends. The z2i and z3i forces are responsible for the
hystereses and the asymmetric resonance line shapes in
Figs. 1(d) and 1(f). The upward asymmetry in Fig. 1(d) is
associated with the cubic z3i force, since motion-induced
tension leads to a positive coefficient �3. When the static
deformation of the beam zs becomes sizable, the quadratic
z2i force can lead to a reversal of the asymmetry [29,30].
We estimate from the asymmetries in Figs. 1(d) and 1(f)
that zs is 2.8 and 13 nm at Vg ¼ 1:5 and 4 V, respectively

(Supplemental Material, Sec. XI [23]). This is in fair
agreement with the calculation in Fig. 2(e), which supports
that the nonlinear z2i and z3i forces originate from motion-
induced tension. We estimate that these forces are 3 orders
of magnitude larger than electrostatic nonlinear forces
[29] and thus neglect the latter (Supplemental Material,
Sec. XII [23]). The coupling forces zjzk and zjzkzl are

intimately related to the z2i and z3i forces, since they all
arise in the same way from the Euler-Bernoulli equation
(Supplemental Material, Sec. IX [23]). It is thus likely that
the modal coupling in our experiment is also due to
motion-induced tension. In other words, the coupling is
mediated by the tension generated by the oscillation of one
mode, which affects the dynamics of the other mode, and
vice versa. The solutions of the equations of motion that
describe motion-induced tension [Eq. (1)] are character-
ized by exotic line shapes for the case of commensurable
resonance frequencies [13]. The line shapes are sensitive to
the coefficients of the coupling forces in a critical fashion.
A detailed comparison between the experiment and theory
is not possible at the moment, since the coefficients depend
on the static shape of the nanotube, which is not known
precisely enough.

The exotic line shapes in nanotube resonators are analo-
gous to Fermi resonances observed in the infrared and
Raman spectra of molecules [31,32]. When the frequency
of a vibrational mode of a molecule is twice as large as that
of another mode, energy can be transferred from one mode
to the other. This leads to a mixing of the eigenfunctions
and to unusual spectra. However, the coupling between the
vibrational modes cannot be externally tuned as in nano-
tube resonators.

The mode coupling force can be made larger in nanotube
resonators than in resonators made from other materials,
since the coupling force scales inversely with the fourth
power of the resonator length (Supplemental Material,
Sec. IX [23]) and nanotube resonators can be as short as

�100 nm [33,34]. Mode coupling is further enhanced by
the excellent material characteristics of nanotubes, since
the coupling force is linearly proportional to E=�
(Supplemental Material, Sec. IX [23]) and nanotubes
have a high Young modulus E and a low mass density �.
The achievement of strong coupling combined with the

possibility to tune its strength opens up many possibilities.
Such coupling may lead to sizable signatures in the
quantum-to-classical transition of a mechanical resonator
[35]. In the quantum regime, it may allow for the manipu-
lation of energy quanta between different mechanical
modes using gate voltage pulses. Classically, the transfer
of energy between mechanical modes could be made faster
than the energy relaxation time, which is interesting for
high-speed signal operation [11,36–38]. The nonlinear
nature of strong coupling is expected to give rise to non-
intuitive behaviors that have not been tested thus far [13].
A striking example is that driving one of two coupled
modes can cause the second mode to reach a higher am-
plitude than that of the driven one.
When finalizing this Letter, we became aware of the

paper by Antonio, Zanette, and López [39] that reports on
strong coupling in a 0.5 mm long micromechanical reso-
nator. The frequency of the modes is tuned by increasing
the driving force (through the Duffing force). The possi-
bility to tune the resonance frequencies of a nanotube
resonator with a gate voltage is more convenient for prac-
tical use.
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